[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167237
Lower trim of the Wythoff fractal sequence, A003603.
3
1, 2, 1, 3, 2, 1, 4, 5, 3, 2, 6, 1, 7, 4, 8, 5, 3, 9, 2, 10, 6, 1, 11, 7, 4, 12, 13, 8, 5, 14, 3, 15, 9, 2, 16, 10, 6, 17, 1, 18, 11, 7, 19, 4, 20, 12, 21, 13, 8, 22, 5, 23, 14, 3, 24, 15, 9, 25, 2, 26, 16, 10, 27, 6, 28, 17, 1, 29, 18, 11, 30, 7, 31, 19, 4, 32, 20, 12
OFFSET
1,2
COMMENTS
A fractal sequence: if you delete the first occurrence of each positive
integer, the remaining sequence is the original. This procedure is called
upper trimming, in contrast to lower trimming, which consists of
subtracting 1 from each term of the original fractal sequence and then
deleting all 0's. In general, the lower trim of a fractal sequence is a
fractal sequence; in particular, the lower trim of A003603 is A167237.
REFERENCES
Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.
FORMULA
Although A167237 is closely associated with the Wythoff array (A035513)
and Fibonacci numbers (A000045), it can be constructed independently.
First, construct the fractal sequence of the Wythoff array inductively
as described at A003603; then subtract 1 from all terms and delete
all 0's.
EXAMPLE
The first 7 rows in the construction of A003603 are
1
1
1 2
1 3 2
1 4 3 2 5
1 6 4 3 7 2 8 5
1 9 6 4 10 3 11 7 2 12 8 5 13
Subtracting 1 and deleting 0's leaves
1
2 1
3 2 1 4
5 4 2 6 1 7 4
8 5 3 9 2 10 6 1 11 7 4 12
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 31 2009
STATUS
approved