[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178535
Matrix inverse of A178534.
3
1, -2, 1, -1, -1, 1, 0, -1, -1, 1, -1, -1, 0, -1, 1, 1, 0, -2, 0, -1, 1, -1, -1, 0, -1, 0, -1, 1, 0, 0, 0, -1, -1, 0, -1, 1, 0, 0, -1, -1, 0, -1, 0, -1, 1, 1, 0, -1, 1, -2, 0, -1, 0, -1, 1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, 0, 1, 1, -1, 0, -1, -1, 0, -1, 0, -1, 1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1
OFFSET
1,2
COMMENTS
Except for first term row sums equal a signed version of A023022.
EXAMPLE
Table begins:
1
-2 1
-1 -1 1
0 -1 -1 1
-1 -1 0 -1 1
1 0 -2 0 -1 1
-1 -1 0 -1 0 -1 1
0 0 0 -1 -1 0 -1 1
0 0 -1 -1 0 -1 0 -1 1
1 0 -1 1 -2 0 -1 0 -1 1
-1 -1 0 -1 0 -1 0 -1 0 -1 1
MAPLE
A178535 := proc(n, l)
option remember;
a := 0 ;
if n = l then
a := 1 ;
end if;
for k from l to n-1 do
a := a-A178534(n, k)*procname(k, l) ;
end do:
a/A178534(n, n) ;
end proc:
seq(seq(A178535(n, k), k=1..n), n=1..12) ; # R. J. Mathar, Oct 28 2010
MATHEMATICA
nmax = 13;
(* T is A178534 *)
T[n_, 1] := Fibonacci[n+1];
T[n_, k_] := T[n, k] = If[k > n, 0, Sum[T[n-i, k-1], {i, 1, k-1}] - Sum[T[n-i, k], {i, 1, k-1}]];
A178535 = Inverse[Array[T, {nmax, nmax}]];
Table[A178535[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 23 2024 *)
CROSSREFS
Cf. First column is A178536.
Sequence in context: A050372 A037802 A037879 * A025449 A047988 A037818
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, May 29 2010
STATUS
approved