[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050372
Number of ways to factor n into distinct composite factors.
4
1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 1, 1, 0, 3, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 1, 1, 1, 1, 4, 0, 1, 1, 2, 0, 1
OFFSET
1,24
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
FORMULA
Dirichlet g.f.: Product_{n is composite}(1+1/n^s).
MAPLE
with(numtheory):
b:= proc(n, k) option remember;
`if`(isprime(n), 0, `if`(n>k, 0, 1)+
add(`if`(d>k or isprime(d), 0, b(n/d, d-1))
, d=divisors(n) minus {1, n}))
end:
a:= n-> b(n$2):
seq(a(n), n=1..120); # Alois P. Heinz, May 26 2013
MATHEMATICA
b[n_, k_] := b[n, k] = If[PrimeQ[n], 0, If[n>k, 0, 1] + Sum[If[d>k || PrimeQ[d], 0, b[n/d, d-1]], {d, Divisors[n] ~Complement~ {1, n}}]];
a[n_] := b[n, n];
Array[a, 120] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Nov 15 1999
STATUS
approved