Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 25 2017 12:11:39
%S 1,1,21,2541,1023561,1036809081,2219782435101,8923051855107621,
%T 61797392100611962641,690766390156657904866161,
%U 11839493254591562294152214181,298556076626963858753929987732701,10706038142052878970311146962646277721,530588758323899225681861502684757146635241
%N Coefficients in the expansion of the sine lemniscate function.
%C Denoted \alpha_n by Lomont and Brillhart on page xii.
%D J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 87.
%H N. J. A. Sloane, <a href="/A144853/b144853.txt">Table of n, a(n) for n = 0..100</a>
%H P. Bala, <a href="/A144853/a144853.pdf">A triangle for calculating A144853</a>
%F E.g.f.: sl(x) = Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 1) / (4*k + 1)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - _Michael Somos_, Apr 25 2011
%F a(0) = 1, a(n + 1) = (1 / 3) * Sum_{j=0..n} binomial( 4*n + 3, 4*j + 1) * a(j) * b(n - j) where b() is A144849.
%F G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A187756. - _Michael Somos_, Jan 03 2013
%e G.f. = 1 + x + 21*x^2 + 2541*x^3 + 1023561*x^4 + 1036809081*x^5 + ...
%p for n from 1 to 15 do b[n]:=add(binomial(4*n,4*j+2)*b[j]*b[n-1-j],j=0..n-1);
%p a[n]:=(1/3)*add(binomial(4*n-1,4*j+1)*a[j]*b[n-1-j],j=0..n-1); od:
%p ta:=[seq(a[n],n=0..15)];
%t a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ JacobiSD[ x, 1/2], {x, 0, m}] / (-3)^n]]; (* _Michael Somos_, Apr 25 2011 *)
%t a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]], {x, 0, m}]]]; (* _Michael Somos_, Apr 25 2011 *)
%o (PARI) {a(n) = my(m); if( n<0, 0, m = 4*n + 1; m! * polcoeff( serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))), m))}; /* _Michael Somos_, Apr 25 2011 */
%o (PARI) {a(n) = my(A, m); if( n<0, 0, m = 4*n + 1; A = O(x); for( k=0, n, A = x + intformal( intformal( A^3 / 6))); m! * polcoeff( A, m))}; /* _Michael Somos_, Apr 25 2011 */
%Y Cf. A144849, A187756.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Feb 12 2009