[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066319
A labeled structure simultaneously a tree and a cycle.
4
1, 1, 6, 96, 3000, 155520, 12101040, 1321205760, 192849310080, 36288000000000, 8556520581100800, 2471543044256563200, 858447696200353459200, 353034171594345598156800, 169665960401437500000000000
OFFSET
1,3
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 68 (2.1.37).
LINKS
D. E. Knuth, A recurrence related to trees, Proc. Amer. Math. Soc. 105 (1989), 335-349. Reprinted as Chapter 39 of Selected Papers on Discrete Mathematics by D. E. Knuth.
Thorsten Weist, On the Euler characteristic of Kronecker moduli spaces, arXiv preprint arXiv:1203.2740 [math.RT], 2012. Cor. 5.3, k=1. But offset 0.
FORMULA
a(n) = n^(n-2)*(n-1)!.
MATHEMATICA
Table[n!*n^(n-3), {n, 1, 20}] (* G. C. Greubel, May 29 2019 *)
PROG
(PARI) a(n) = n^(n-2)*(n-1)!; \\ Michel Marcus, May 29 2019
(Magma) [n^(n-3)*Factorial(n): n in [1..20]]; // G. C. Greubel, May 29 2019
(Sage) [n^(n-3)*factorial(n) for n in (1..20)] # G. C. Greubel, May 29 2019
CROSSREFS
Sequence in context: A251576 A374437 A126151 * A186269 A111826 A213797
KEYWORD
nonn
AUTHOR
Christian G. Bower, Dec 13 2001
EXTENSIONS
Knuth reference from David Callan, Feb 07 2004
STATUS
approved