[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112418
Primes which have a prime number of partitions into five distinct primes.
1
53, 59, 67, 83, 113, 151, 157, 211, 239, 601, 809, 821, 881, 971, 1237, 1297, 1427, 1669, 1759, 1973, 2069, 2129, 2243, 2333, 2659, 2677, 2719, 2789, 2803, 2999, 3329, 3613, 3623, 3769, 3797, 4001, 4451
OFFSET
1,1
COMMENTS
The corresponding numbers of partitions are 2,5,11,29,109,331,379,1091...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..102
EXAMPLE
53 is there because there are 2 partitions of 53 (3+7+11+13+19, 5+7+11+13+17) and 2 is prime.
MAPLE
part5_prime:=proc(N) s:=1; for n from 2 to N do cont:=0; for i from 1 to n-5 do for j from i+1 to n-4 do for k from j+1 to n-3 do for l from k+1 to n-2 do for m from l+1 to n-1 do if(ithprime(n)= ithprime(i)+ithprime(j)+ithprime(k)+ithprime(l)+ithprime(m) then cont:=cont+1; fi; od; od; od; od; od; if (isprime(cont)=true) then a[s]:=ithprime(n); s:=s+1; fi; od; end:
PROG
(PARI) has(n)=my(t, Q, R, S); forprime(p=n\5+1, n-26, Q=n-p; forprime(q=Q\4+1, min(p-1, Q-15), R=Q-q; forprime(r=R\3+1, min(q-1, R-8), S=R-r; forprime(s=S-r+1, (S-1)\2, isprime(S-s) && t++)))); isprime(t)
select(has, primes(100)) \\ Charles R Greathouse IV, Apr 22 2015
(PARI) list(lim)=my(v=vectorsmall(precprime(lim)), u=List(), Q, R, S); forprime(p=13, #v-26, Q=#v-p; forprime(q=11, min(p-1, Q-15), R=Q-q; forprime(r=7, min(q-1, R-8), S=R-r; forprime(s=5, min(S-2, r-1), forprime(t=3, min(S-s, s-1), v[p+q+r+s+t]++))))); forprime(p=2, lim, if(isprime(v[p]), listput(u, p))); Set(u) \\ Charles R Greathouse IV, Apr 22 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Don Reble, Jan 26 2006
a(31)-a(37) from Charles R Greathouse IV, Apr 22 2015
STATUS
approved