Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 19 2017 03:14:58
%S 53,59,67,83,113,151,157,211,239,601,809,821,881,971,1237,1297,1427,
%T 1669,1759,1973,2069,2129,2243,2333,2659,2677,2719,2789,2803,2999,
%U 3329,3613,3623,3769,3797,4001,4451
%N Primes which have a prime number of partitions into five distinct primes.
%C The corresponding numbers of partitions are 2,5,11,29,109,331,379,1091...
%H Charles R Greathouse IV, <a href="/A112418/b112418.txt">Table of n, a(n) for n = 1..102</a>
%e 53 is there because there are 2 partitions of 53 (3+7+11+13+19, 5+7+11+13+17) and 2 is prime.
%p part5_prime:=proc(N) s:=1; for n from 2 to N do cont:=0; for i from 1 to n-5 do for j from i+1 to n-4 do for k from j+1 to n-3 do for l from k+1 to n-2 do for m from l+1 to n-1 do if(ithprime(n)= ithprime(i)+ithprime(j)+ithprime(k)+ithprime(l)+ithprime(m) then cont:=cont+1; fi; od; od; od; od; od; if (isprime(cont)=true) then a[s]:=ithprime(n); s:=s+1; fi; od; end:
%o (PARI) has(n)=my(t,Q,R,S);forprime(p=n\5+1,n-26, Q=n-p; forprime(q=Q\4+1,min(p-1,Q-15), R=Q-q; forprime(r=R\3+1,min(q-1,R-8), S=R-r; forprime(s=S-r+1,(S-1)\2, isprime(S-s) && t++)))); isprime(t)
%o select(has, primes(100)) \\ _Charles R Greathouse IV_, Apr 22 2015
%o (PARI) list(lim)=my(v=vectorsmall(precprime(lim)),u=List(),Q,R,S); forprime(p=13,#v-26, Q=#v-p; forprime(q=11,min(p-1,Q-15), R=Q-q; forprime(r=7,min(q-1,R-8), S=R-r; forprime(s=5,min(S-2,r-1), forprime(t=3,min(S-s,s-1), v[p+q+r+s+t]++))))); forprime(p=2,lim, if(isprime(v[p]), listput(u,p))); Set(u) \\ _Charles R Greathouse IV_, Apr 22 2015
%Y Cf. A000009, A000041, A007963, A051034.
%K nonn
%O 1,1
%A _Giorgio Balzarotti_ and _Paolo P. Lava_, Dec 09 2005
%E Edited by _Don Reble_, Jan 26 2006
%E a(31)-a(37) from _Charles R Greathouse IV_, Apr 22 2015