[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112416
Next-to-most-significant binary digit of the n-th prime.
2
0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
The length of the run of zeros pi(2^n+2^(n-1))-pi(2^n) (A095765): 1, 1, 1, 3, 4, 6, 12, 22, 38, 70, 130, 237, 441, ... and the length of the run of ones pi(2^n-1)-pi(2^n-2^(n-2)-1) (A095766): 1, 1, 1, 2, 3, 7, 11, 21, 37, 67, 125, 227, 431, ..., . - Robert G. Wilson v
FORMULA
a(n) = floor((p(n) - 2^m)/2^(m-1)), where p(n) is the n-th prime and m = floor(log(p(n))/log(2)).
EXAMPLE
The 9th prime is 23 (in decimal), which is 10111 in binary. So a(9) = 0, the next-to-most significant binary digit of 23.
MATHEMATICA
f[n_] := IntegerDigits[Prime@n, 2][[2]]; Array[f, 105] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A268384 A358670 A288524 * A061265 A288466 A285073
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Dec 09 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jan 24 2006
STATUS
approved