[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095766
Number of primes whose binary expansion begins '11' (A080166) in range ]2^n,2^(n+1)].
4
1, 1, 1, 2, 3, 7, 11, 21, 37, 67, 125, 227, 431, 787, 1491, 2812, 5296, 10055, 19079, 36343, 69398, 132661, 254122, 488028, 937994, 1806147, 3482463, 6722625, 12994889, 25145151, 48709705, 94451647, 183312229, 356089665, 692285717
OFFSET
1,4
COMMENTS
I.e. number of primes p such that (2^n + 2^(n-1)) < p < 2^(n+1).
Ratio a(n)/A036378(n) converges as follows: 1, 0.5, 0.5, 0.4, 0.428571, 0.538462, 0.478261, 0.488372, 0.493333, 0.489051, 0.490196, 0.489224, 0.494266, 0.488213, 0.492079, 0.492556, 0.492697, 0.493134, 0.493827, 0.493885, 0.494513, 0.494605, 0.494682, 0.495049, 0.495214, 0.495412, 0.495563, 0.495699, 0.49585, 0.495984, 0.496113, 0.496237, 0.496346
MATHEMATICA
f[n_] := PrimePi[2^(n + 1)] - PrimePi[2^n + 2^(n - 1) - 1]; Array[f, 35] (* Robert G. Wilson v *)
PROG
(PARI) a(n)=primepi(2^(n+1))-primepi(2^n+2^(n-1)-1) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
a(n) = A036378(n)-A095765(n).
Sequence in context: A037078 A034431 A339610 * A126755 A228592 A034795
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 12 2004
EXTENSIONS
a(34) and a(35) from Robert G. Wilson v, Jan 24 2006
STATUS
approved