[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114113
a(n) = sum{k=1 to n} (A114112(k)). (For n>=2, a(n) = sum{k=1 to n} (A014681(k)) =sum{k=1 to n} (A103889(k)).).
5
1, 3, 7, 10, 16, 21, 29, 36, 46, 55, 67, 78, 92, 105, 121, 136, 154, 171, 191, 210, 232, 253, 277, 300, 326, 351, 379, 406, 436, 465, 497, 528, 562, 595, 631, 666, 704, 741, 781, 820, 862, 903, 947, 990, 1036, 1081, 1129, 1176, 1226, 1275, 1327, 1378, 1432
OFFSET
1,2
COMMENTS
a(n) is not divisible by (A114112(n+1)).
Sequence is A130883 union A014105 - {0,2}. - Anthony Hernandez, Sep 08 2016
FORMULA
a(1)=1. a(2n) = n*(2n+1). a(2n+1) = 2n^2 +3n +2.
From R. J. Mathar, Nov 04 2008: (Start)
a(n) = A026035(n+1) - A026035(n), n>1.
G.f.: x(1+x+x^2-2x^3+x^4)/((1+x)(1-x)^3).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>5. (End)
This is (essentially) 1 + A084265, - N. J. A. Sloane, Mar 12 2018
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 7, 10, 16}, 52]] (* Jean-François Alcover, Sep 22 2017 *)
CoefficientList[Series[(1 + x + x^2 -2 x^3 + x^4)/((1 + x) (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 13 2018 *)
PROG
(Magma) I:=[1, 3, 7, 10, 16]; [n le 5 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // Vincenzo Librandi, Mar 13 2018
(Python)
def A114113(n): return 1 if n == 1 else (m:=n//2)*(n+1) + (n+1-m)*(n-2*m) # Chai Wah Wu, May 24 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Nov 13 2005
EXTENSIONS
More terms from R. J. Mathar, Aug 31 2007
STATUS
approved