Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Sep 08 2022 08:45:23
%S 1,3,7,10,16,21,29,36,46,55,67,78,92,105,121,136,154,171,191,210,232,
%T 253,277,300,326,351,379,406,436,465,497,528,562,595,631,666,704,741,
%U 781,820,862,903,947,990,1036,1081,1129,1176,1226,1275,1327,1378,1432
%N a(n) = sum{k=1 to n} (A114112(k)). (For n>=2, a(n) = sum{k=1 to n} (A014681(k)) =sum{k=1 to n} (A103889(k)).).
%C a(n) is not divisible by (A114112(n+1)).
%C Sequence is A130883 union A014105 - {0,2}. - _Anthony Hernandez_, Sep 08 2016
%H Vincenzo Librandi, <a href="/A114113/b114113.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F a(1)=1. a(2n) = n*(2n+1). a(2n+1) = 2n^2 +3n +2.
%F From _R. J. Mathar_, Nov 04 2008: (Start)
%F a(n) = A026035(n+1) - A026035(n), n>1.
%F G.f.: x(1+x+x^2-2x^3+x^4)/((1+x)(1-x)^3).
%F a(n) = 2*a(n-1)-2*a(n-3)+a(n-4), n>5. (End)
%F This is (essentially) 1 + A084265, - _N. J. A. Sloane_, Mar 12 2018
%t Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 7, 10, 16}, 52]] (* _Jean-François Alcover_, Sep 22 2017 *)
%t CoefficientList[Series[(1 + x + x^2 -2 x^3 + x^4)/((1 + x) (1 - x)^3), {x, 0, 60}], x] (* _Vincenzo Librandi_, Mar 13 2018 *)
%o (Magma) I:=[1,3,7,10,16]; [n le 5 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..60]]; // _Vincenzo Librandi_, Mar 13 2018
%o (Python)
%o def A114113(n): return 1 if n == 1 else (m:=n//2)*(n+1) + (n+1-m)*(n-2*m) # _Chai Wah Wu_, May 24 2022
%Y Cf. A014105, A014681, A026035, A084265, A103889, A114112.
%K easy,nonn
%O 1,2
%A _Leroy Quet_, Nov 13 2005
%E More terms from _R. J. Mathar_, Aug 31 2007