[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101912
G.f. satisfies: A(x) = 1/(1 + x*A(x^2)) and also the continued fraction: 1 + x*A(x^3) = [1; 1/x, 1/x^2, 1/x^4, 1/x^8, ..., 1/x^(2^(n-1)), ...].
12
1, -1, 1, 0, -1, 1, 0, -2, 3, -1, -3, 6, -4, -4, 12, -10, -5, 23, -25, -2, 43, -57, 12, 74, -124, 56, 120, -258, 172, 170, -516, 454, 187, -989, 1095, 40, -1811, 2487, -604, -3128, 5375, -2567, -4991, 11140, -7704, -6976, 22164, -20062, -7220, 42288, -48020, -36, 76928, -108334, 29476, 131898, -233020, 117166
OFFSET
0,8
COMMENTS
Sequence appears to have a rational g.f. - Ralf Stephan, May 17 2007
The conjecture is wrong. The g.f. is dependent on the number of terms. - Johannes W. Meijer, Aug 08 2011
FORMULA
G.f.: 1/(1 + x/(1 + x^2/(1 + x^4/(1 + x^8/(1 + ...))))) (continued fraction). - Joerg Arndt, Oct 19 2012
G.f. A(x) = 1/B(x) where B(x) is the g.f. of A218031. - Joerg Arndt, Oct 19 2012
a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 01 2022
MAPLE
nmax:=57: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101912(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^2)), x, k+1); for n from 0 to k do x(n):=coeff(f(x), x, n) od: A101912(k):=x(k): od: seq(A101912(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
MATHEMATICA
m = 58; A[_] = 0; Do[A[x_] = 1/(1 + x A[x^2]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n)=local(A); A=1-x; for(i=1, n\2+1, A=1/(1+x*subst(A, x, x^2)+x*O(x^n))); polcoeff(A, n, x)}
(PARI) {a(n)=local(M=contfracpnqn(concat(1, vector(#binary(n)+1, n, 1/x^(2^(n-1)))))); polcoeff(M[1, 1]/M[2, 1]+x*O(x^(3*n+1)), 3*n+1)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 20 2004
STATUS
approved