[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218031
G.f. A(x) satisfies A(x) = 1 + x / A(x^2).
3
1, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -2, 0, 3, 0, -1, 0, -3, 0, 6, 0, -4, 0, -4, 0, 12, 0, -10, 0, -5, 0, 23, 0, -25, 0, -2, 0, 43, 0, -57, 0, 12, 0, 74, 0, -124, 0, 56, 0, 120, 0, -258, 0, 172, 0, 170, 0, -516, 0, 454, 0, 187, 0, -989, 0, 1095, 0, 40, 0, -1811, 0, 2487
OFFSET
0,16
LINKS
FORMULA
G.f. A(x) = 1/B(x) = 1 + x*B(x^2) where B(x) is the g.f. of A101912.
G.f.: 1+x/(1+x^2/(1+x^4/(1+x^8/(1+ ...)))) (continued fraction).
(A(x) + 1) / (A(x) - 1) = 1 + 2*A(x^2) / x. [Joerg Arndt, Feb 28 2014]
A(x^3) = F(x) - x where F(x) is the g.f. of A238429. [Joerg Arndt, Feb 28 2014]
MAPLE
P:= 1+x: d:= 1:
while d < 127 do
P:= convert(series(1+x/subs(x=x^2, P), x, 2+2*d), polynom);
d:= 1+2*d;
od:
seq(coeff(P, x, i), i=0..d); # Robert Israel, Mar 13 2018
MATHEMATICA
nmax = 75; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[x^2]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
PROG
(PARI)
N=166; R=O('x^N); x='x+R;
A= 1; for (k=1, N+1, A = 1 + x / subst(A, 'x, 'x^2) + R; );
Vec(A)
CROSSREFS
Sequence in context: A284975 A219202 A341980 * A135523 A194663 A135685
KEYWORD
sign
AUTHOR
Joerg Arndt, Oct 18 2012
STATUS
approved