[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100981
Number of totally ramified extensions over Q_5 with degree n in the algebraic closure of Q_5.
8
1, 2, 3, 4, 105, 6, 7, 8, 9, 1210, 11, 12, 13, 14, 9315, 16, 17, 18, 19, 62420, 21, 22, 23, 24, 8203025, 26, 27, 28, 29, 2343630, 31, 32, 33, 34, 13671735, 36, 37, 38, 39, 78124840, 41, 42, 43, 44, 439452945, 46, 47, 48, 49, 295410156050, 51
OFFSET
1,2
REFERENCES
M. Krasner, Le nombre des surcorps primitifs d'un degre donne et le nombre des surcorps metagaloisiens d'un degre donne d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Academie des Sciences, Paris 254, 255, 1962
FORMULA
a(n)=n*(sum_{s=0}^m p^s*(p^(eps(s)*n)-p^(eps(s-1)*n))), where p=5, n=h*p^m, with gcd(h, p)=1, eps(-1)=-infinity, eps(0)=0 and eps(s)=sum_{i=1 to s} 1/(p^i)
EXAMPLE
a(3)=3: there is one totally ramified extension with Galois group S_3, so there are 3 totally ramified extensions in the algebraic closure all isomorphic to Q_5[x]/(x^3+5)
MAPLE
p:=5; eps:=proc()local p, s, i, sum; p:=args[1]; s:=args[2]; if s=-1 then return -infinity; fi; if s=0 then return 0; fi; sum:=0; for i from 1 to s do sum:=sum+1/p^i; od; return sum; end: ppart:=proc() local p, n; p:=args[1]; n:=args[2]; return igcd(n, p^n); end: qpart:=proc() local p, n; p:=args[1]; n:=args[2]; return n/igcd(n, p^n); end: logp:=proc() local p, pp; p:=args[1]; pp:=args[2]; if op(ifactors(pp))[2]=[] then return 0; else return op(op(ifactors(pp))[2])[2]; fi; end: summe:=0; m:=logp(p, ppart(p, n)); h:=qpart(p, n); for s from 0 to m do summe:=summe+(p^s*(p^(eps(p, s)*n)-p^(eps(p, s-1)*n)); od; a(n):=n*summe;
KEYWORD
nonn
AUTHOR
Volker Schmitt (clamsi(AT)gmx.net), Nov 25 2004
STATUS
approved