[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244542
Palindromes n such that n +/- the product of digits of n are both palindromes.
0
1, 2, 3, 4, 101, 202, 252, 303, 404, 505, 606, 707, 808, 909, 1001, 2002, 3003, 4004, 5005, 6006, 7007, 8008, 9009, 10001, 10101, 10201, 10301, 10401, 10501, 10601, 10701, 10801, 10901, 11011, 12021, 13031, 14041, 15051, 15451, 16061, 17071, 18081, 19091, 20002, 20102, 20202
OFFSET
1,2
COMMENTS
These are the palindromes in A244541.
All palindromes with a zero will be in this sequence.
The palindromes that do not contain a zero but do satisfy the definition begin 1, 2, 3, 4, 252, 15451, 25152, 25252, 25352, 25452, 36563, 51415, 52125, 52225, 52325, 52425, 63536, 92529, 1455541, 1545451, 1954591 . . . - Harvey P. Dale, May 14 2019
EXAMPLE
101 - 1*0*1 and 101 + 1*0*1 are both palindromes (still 101). So 101 is a member of this sequence.
PROG
(PARI) rev(n)={r=""; for(i=1, #digits(n), r=concat(Str(digits(n)[i]), r)); return(eval(r))}
for(n=1, 10^5, if(rev(n)==n, dig=digits(n); p=prod(k=1, #dig, dig[k]); mi=n-p; ma=n+p; if(rev(mi)==mi&&rev(ma)==ma, print1(n, ", "))))
CROSSREFS
Sequence in context: A262526 A171564 A244541 * A085935 A100981 A001095
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jun 29 2014
STATUS
approved