[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100985
Number of Q_5-isomorphism classes of fields of degree n in the algebraic closure of Q_5.
8
1, 3, 2, 7, 26, 7, 2, 11, 3, 378, 2, 17, 2, 6, 1012, 17, 2, 11, 2, 22302, 4, 6, 2, 29, 397515, 6, 4, 14, 2, 406902, 2, 23, 4, 6, 535732, 27, 2, 6, 4, 19437446, 2, 15, 2, 14, 16927758, 6, 2, 49, 3
OFFSET
1,2
REFERENCES
M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
LINKS
Xiang-Dong Hou and Kevin Keating, Enumeration of isomorphism classes of extensions of p-adic fields, Journal of Number Theory, Volume 104, Issue 1, January 2004, Pages 14-61.
FORMULA
p:=5; n=f*e; f residue degree, e ramification index if (p, e)=1, let I(f, e):=b/e*Sum_{h=0..e-1} 1/c_h, where b=gcd(e, p^f-1), c_h the smallest positive integer such that b divides (p^c-1)*h a(n) = sum_{f | n} I(f, n/f) There exists a formula, when p divides e exactly and there exists a big formula for some cases when p^2 divides e exactly.
EXAMPLE
a(3)=2. There is the one unramified extension Q_125, one ramified with Galoisgroup S_3 Q_5[x]/(x^3+5). There are 1+3*1=4 extensions (Cf. A100978) in 1+1=2 Q_5-isomorphism classes.
MAPLE
# for gcd(e, p)=1 only!
smallestIntDiv:=proc() local b, q, h, i; b:=args[1]; q:=args[2]; h:=args[3]; for i from 1 to infinity do if gcd(b, (q^i-1)*h)=b then return i; fi; od; end:
I0Ffefe:=proc() local p, f1, e1, f, e, i, q, h, summe, c, b; p:=args[1]; f1:=args[2]; e1:=args[3]; f:=args[4]; e:=args[5]; summe:=0; q:=p^f1; b:=gcd(e, q^f-1); for h from 0 to e-1 do c:=smallestIntDiv(b, q, h); summe:=summe+1/c; od; return b/e*summe; end:
I0Ffen:=proc() local p, e1, f1, n, f, e, summe; p:=args[1]; e1:=args[2]; f1:=args[3]; n:=args[4]; summe:=0; for f in divisors(n) do e:=n/f; summe:=summe+I0Ffefe(p, f1, e1, f, e); od; return summe; end:
p:=5; a(n):=I0Ffen(p, 1, 1, n);
KEYWORD
nonn,hard,more
AUTHOR
Volker Schmitt (clamsi(AT)gmx.net), Nov 29 2004
STATUS
approved