[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090249
a(n) = 28a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 28.
3
2, 28, 782, 21868, 611522, 17100748, 478209422, 13372763068, 373959156482, 10457483618428, 292435582159502, 8177738816847628, 228684251289574082, 6394981297291226668, 178830792072864772622, 5000867196742922406748
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (14+sqrt(195)) =27.96424004... Lim a(n)/a(n+1) as n approaches infinity = 0.03575995... = 1/(14+sqrt(195)) = (14-sqrt(195)). Lim a(n+1)/a(n) as n approaches infinity = 27.96424004... = (14+sqrt(195)) = 1/(14-sqrt(195)). Lim a(n)/a(n+1) = 28 - Lim a(n+1)/a(n).
FORMULA
a(n) = 28a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 28. a(n) = (14+sqrt(195))^n + (14-sqrt(195))^n. (a(n))^2 =a(2n)+2.
G.f.: (2-28*x)/(1-28*x+x^2). - Philippe Deléham, Nov 02 2008
EXAMPLE
a(4) = 611522 = 28a(3) - a(2) = 28*21868 - 782 =(14+sqrt(195))^4 + (14-sqrt(195))^4 =611521.999998364 + 0.000001635 =611522.
MATHEMATICA
a[0] = 2; a[1] = 28; a[n_] := 28a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{28, -1}, {2, 28}, 20] (* or *) CoefficientList[ Series[ (2-28x)/(x^2-28x+1), {x, 0, 20}], x] (* Harvey P. Dale, Jun 25 2011 *)
PROG
(Sage) [lucas_number2(n, 28, 1) for n in range(0, 16)] # Zerinvary Lajos, Jun 27 2008
CROSSREFS
Sequence in context: A089836 A372164 A372165 * A264411 A370378 A009256
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jan 30 2004
STATUS
approved