Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 07 2019 12:18:24
%S 2,28,782,21868,611522,17100748,478209422,13372763068,373959156482,
%T 10457483618428,292435582159502,8177738816847628,228684251289574082,
%U 6394981297291226668,178830792072864772622,5000867196742922406748
%N a(n) = 28a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 28.
%C a(n+1)/a(n) converges to (14+sqrt(195)) =27.96424004... Lim a(n)/a(n+1) as n approaches infinity = 0.03575995... = 1/(14+sqrt(195)) = (14-sqrt(195)). Lim a(n+1)/a(n) as n approaches infinity = 27.96424004... = (14+sqrt(195)) = 1/(14-sqrt(195)). Lim a(n)/a(n+1) = 28 - Lim a(n+1)/a(n).
%H Indranil Ghosh, <a href="/A090249/b090249.txt">Table of n, a(n) for n = 0..689</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (28, -1).
%F a(n) = 28a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 28. a(n) = (14+sqrt(195))^n + (14-sqrt(195))^n. (a(n))^2 =a(2n)+2.
%F G.f.: (2-28*x)/(1-28*x+x^2). - _Philippe Deléham_, Nov 02 2008
%e a(4) = 611522 = 28a(3) - a(2) = 28*21868 - 782 =(14+sqrt(195))^4 + (14-sqrt(195))^4 =611521.999998364 + 0.000001635 =611522.
%t a[0] = 2; a[1] = 28; a[n_] := 28a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* _Robert G. Wilson v_, Jan 30 2004 *)
%t LinearRecurrence[{28,-1},{2,28},20] (* or *) CoefficientList[ Series[ (2-28x)/(x^2-28x+1),{x,0,20}],x] (* _Harvey P. Dale_, Jun 25 2011 *)
%o (Sage) [lucas_number2(n,28,1) for n in range(0,16)] # _Zerinvary Lajos_, Jun 27 2008
%Y Cf. A053204, A063872.
%K easy,nonn
%O 0,1
%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004
%E More terms from _Robert G. Wilson v_, Jan 30 2004