[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096046
a(n) = B(2n,3)/B(2n) (see comment).
11
1, 15, 141, 1275, 11481, 103335, 930021, 8370195, 75331761, 677985855, 6101872701, 54916854315, 494251688841, 4448265199575, 40034386796181, 360309481165635, 3242785330490721, 29185067974416495, 262665611769748461
OFFSET
0,2
COMMENTS
B(n,p) = Sum_{i=0..n} p^i*Sum_{j=0..i} binomial(n,j)*B(j) where B(k) = k-th Bernoulli number.
LINKS
FORMULA
a(n) = (1/4)*(7*9^n - 3).
a(n) = 10*a(n-1) - 9*a(n-2); a(0)=1, a(1)=15.
a(n) = 9*a(n-1) + 6. First differences = 14*A001019(n). - Paul Curtz, Jul 07 2008
PROG
(PARI) a(n)=sum(i=0, 2*n, 3^i*sum(j=0, i, binomial(2*n, j)*bernfrac(j)))/bernfrac(2*n)
(Magma) [(1/4)*(7*9^n-3): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
(Maxima) A096046(n):=(1/4)*(7*9^n-3)$ makelist(A096046(n), n, 0, 30); /* Martin Ettl, Nov 13 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jun 17 2004
STATUS
approved