Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:14
%S 1,15,141,1275,11481,103335,930021,8370195,75331761,677985855,
%T 6101872701,54916854315,494251688841,4448265199575,40034386796181,
%U 360309481165635,3242785330490721,29185067974416495,262665611769748461
%N a(n) = B(2n,3)/B(2n) (see comment).
%C B(n,p) = Sum_{i=0..n} p^i*Sum_{j=0..i} binomial(n,j)*B(j) where B(k) = k-th Bernoulli number.
%H Vincenzo Librandi, <a href="/A096046/b096046.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = (1/4)*(7*9^n - 3).
%F a(n) = 10*a(n-1) - 9*a(n-2); a(0)=1, a(1)=15.
%F a(n) = 9*a(n-1) + 6. First differences = 14*A001019(n). - _Paul Curtz_, Jul 07 2008
%o (PARI) a(n)=sum(i=0,2*n,3^i*sum(j=0,i,binomial(2*n,j)*bernfrac(j)))/bernfrac(2*n)
%o (Magma) [(1/4)*(7*9^n-3): n in [0..30]]; // _Vincenzo Librandi_, Aug 13 2011
%o (Maxima) A096046(n):=(1/4)*(7*9^n-3)$ makelist(A096046(n),n,0,30); /* _Martin Ettl_, Nov 13 2012 */
%Y Cf. A096045, A096047, A096048.
%K nonn
%O 0,2
%A _Benoit Cloitre_, Jun 17 2004