[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088695
E.g.f. satisfies A(x) = f(x*A(x)), where f(x) = exp(x+x^2).
13
1, 1, 5, 40, 485, 7776, 156457, 3788800, 107414505, 3491200000, 128019454541, 5229222395904, 235490648957005, 11592449531084800, 619331166211640625, 35691050995648823296, 2206955604752999720273, 145757527499874820423680, 10240455593560436925898645
OFFSET
0,3
COMMENTS
Radius of convergence of A(x): r = (1/2)*exp(-3/4) = 0.23618..., where A(r) = exp(3/4) and r = limit a(n)/a(n+1)*(n+1) as n->infinity. Radius of convergence is from a general formula yet unproved.
FORMULA
a(n) = n! * [x^n] exp(x+x^2)^(n+1)/(n+1).
a(n) = n! * Sum_{k=floor(n/2)..n} binomial(k,n-k)*(n+1)^(k-1)/k!. - Vladimir Kruchinin, Aug 04 2011
a(n) ~ 2^(n+1/2) * n^(n-1) / (sqrt(3) * exp(n/4 - 3/4)). - Vaclav Kotesovec, Jan 24 2014
E.g.f.: (1/x) * Series_Reversion( x*exp(-x*(1 + x)) ). - Seiichi Manyama, Sep 23 2024
MATHEMATICA
Table[n!*SeriesCoefficient[(E^(x+x^2))^(n+1)/(n+1), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 24 2014 *)
PROG
(PARI) a(n)=n!*polcoeff(exp(x+x^2)^(n+1)+x*O(x^n), n, x)/(n+1)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Oct 07 2003
STATUS
approved