[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362771
E.g.f. satisfies A(x) = exp( x * (1+x) * A(x) ).
23
1, 1, 5, 34, 353, 4756, 80107, 1617358, 38145473, 1029745576, 31326858611, 1060716408874, 39571357618465, 1612919873514028, 71321521181852411, 3400790769764598886, 173950205958460627073, 9501239617356541012432, 551961456374529522954595
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x * (1+x)) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(k,n-k)/k!.
a(n) ~ sqrt(2 + 8*exp(-1) - 2*sqrt(1 + 4*exp(-1))) * 2^(n-1) * n^(n-1) / ((sqrt(1 + 4*exp(-1)) - 1)^n * exp(n - 3/2)). - Vaclav Kotesovec, May 03 2023
MATHEMATICA
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x*(1 + x)*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x)))))
CROSSREFS
Sequence in context: A198078 A133297 A054931 * A276753 A226554 A211037
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2023
STATUS
approved