# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a088695 Showing 1-1 of 1 %I A088695 #33 Dec 01 2024 10:51:32 %S A088695 1,1,5,40,485,7776,156457,3788800,107414505,3491200000,128019454541, %T A088695 5229222395904,235490648957005,11592449531084800,619331166211640625, %U A088695 35691050995648823296,2206955604752999720273,145757527499874820423680,10240455593560436925898645 %N A088695 E.g.f. satisfies A(x) = f(x*A(x)), where f(x) = exp(x+x^2). %C A088695 Radius of convergence of A(x): r = (1/2)*exp(-3/4) = 0.23618..., where A(r) = exp(3/4) and r = limit a(n)/a(n+1)*(n+1) as n->infinity. Radius of convergence is from a general formula yet unproved. %H A088695 Seiichi Manyama, Table of n, a(n) for n = 0..364 %H A088695 Index entries for reversions of series %F A088695 a(n) = n! * [x^n] exp(x+x^2)^(n+1)/(n+1). %F A088695 a(n) = n! * Sum_{k=floor(n/2)..n} binomial(k,n-k)*(n+1)^(k-1)/k!. - _Vladimir Kruchinin_, Aug 04 2011 %F A088695 a(n) ~ 2^(n+1/2) * n^(n-1) / (sqrt(3) * exp(n/4 - 3/4)). - _Vaclav Kotesovec_, Jan 24 2014 %F A088695 E.g.f.: (1/x) * Series_Reversion( x*exp(-x*(1 + x)) ). - _Seiichi Manyama_, Sep 23 2024 %t A088695 Table[n!*SeriesCoefficient[(E^(x+x^2))^(n+1)/(n+1),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Jan 24 2014 *) %o A088695 (PARI) a(n)=n!*polcoeff(exp(x+x^2)^(n+1)+x*O(x^n),n,x)/(n+1) %Y A088695 Cf. A143768, A362771. %Y A088695 Cf. A365031, A365032. %K A088695 nonn,changed %O A088695 0,3 %A A088695 _Paul D. Hanna_, Oct 07 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE