[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086804
a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).
3
0, 1, 16, 2048, 1638400, 7247757312, 164995463643136, 18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, 271732164163901599116133024293512544256
OFFSET
0,3
COMMENTS
Discriminant of Chebyshev polynomial U_n (x) of second kind.
Chebyshev second kind polynomials are defined by U(0)=0, U(1)=1 and U(n) = 2xU(n-1) - U(n-2) for n > 1.
The absolute value of the discriminant of Pell polynomials is a(n-1).
Pell polynomials are defined by P(0)=0, P(1)=1 and P(n) = 2x P(n-1) + P(n-2) if n > 1. - Rigoberto Florez, Sep 01 2018
REFERENCES
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.
LINKS
Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Eric Weisstein's World of Mathematics, Discriminant
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the Second Kind
Eric Weisstein's World of Mathematics, Pell Polynomial
FORMULA
a(n) = ((n+1)^(n-2))*2^(n^2), n >= 1, a(0):=0.
a(n) = ((2^(2*(n-1)))*Det(Vn(xn[1],...,xn[n])))^2, n >= 1, with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=cos(Pi*i/(n+1)), i=1..n, are the zeros of the Chebyshev U(n,x) polynomials.
a(n) = ((-1)^(n*(n-1)/2))*(2^(n*(n-2)))*Product_{i=1..n}((d/dx)U(n,x)|_{x=xn[i]}), n >= 1, with the zeros xn[i], i=1..n, given above.
MATHEMATICA
Join[{0}, Table[(n+1)^(n-2) 2^n^2, {n, 10}]] (* Harvey P. Dale, May 01 2015 *)
PROG
(PARI) a(n)=if(n<1, 0, (n+1)^(n-2)*2^(n^2))
(PARI) a(n)=if(n<1, 0, n++; poldisc(poltchebi(n)'/n))
(Magma) [0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // G. C. Greubel, Nov 11 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003
EXTENSIONS
Formula and more terms from Vladeta Jovovic, Aug 07 2003
STATUS
approved