[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).
3

%I #36 Sep 08 2022 08:45:11

%S 0,1,16,2048,1638400,7247757312,164995463643136,18446744073709551616,

%T 9803356117276277820358656,24178516392292583494123520000000,

%U 271732164163901599116133024293512544256

%N a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).

%C Discriminant of Chebyshev polynomial U_n (x) of second kind.

%C Chebyshev second kind polynomials are defined by U(0)=0, U(1)=1 and U(n) = 2xU(n-1) - U(n-2) for n > 1.

%C The absolute value of the discriminant of Pell polynomials is a(n-1).

%C Pell polynomials are defined by P(0)=0, P(1)=1 and P(n) = 2x P(n-1) + P(n-2) if n > 1. - _Rigoberto Florez_, Sep 01 2018

%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.

%H Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, <a href="https://arxiv.org/abs/1808.01264">The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials</a>, arXiv:1808.01264 [math.NT], 2018.

%H Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez2/florez8.html">Star of David and other patterns in the Hosoya-like polynomials triangles</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.

%H R. Flórez, N. McAnally, and A. Mukherjees, <a href="http://math.colgate.edu/~integers/s18b2/s18b2.Abstract.html">Identities for the generalized Fibonacci polynomial</a>, Integers, 18B (2018), Paper No. A2.

%H R. Flórez, R. Higuita and A. Mukherjees, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Discriminant.html">Discriminant</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html">Chebyshev Polynomial of the Second Kind</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellPolynomial.html">Pell Polynomial</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%F a(n) = ((n+1)^(n-2))*2^(n^2), n >= 1, a(0):=0.

%F a(n) = ((2^(2*(n-1)))*Det(Vn(xn[1],...,xn[n])))^2, n >= 1, with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=cos(Pi*i/(n+1)), i=1..n, are the zeros of the Chebyshev U(n,x) polynomials.

%F a(n) = ((-1)^(n*(n-1)/2))*(2^(n*(n-2)))*Product_{i=1..n}((d/dx)U(n,x)|_{x=xn[i]}), n >= 1, with the zeros xn[i], i=1..n, given above.

%t Join[{0},Table[(n+1)^(n-2) 2^n^2,{n,10}]] (* _Harvey P. Dale_, May 01 2015 *)

%o (PARI) a(n)=if(n<1,0,(n+1)^(n-2)*2^(n^2))

%o (PARI) a(n)=if(n<1,0,n++; poldisc(poltchebi(n)'/n))

%o (Magma) [0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // _G. C. Greubel_, Nov 11 2018

%Y Cf. A007701, A127670 (discriminant for S-polynomials), A006645, A001629, A001871, A006645, A007701, A045618, A045925, A093967, A193678, A317404, A317405, A317408, A317451, A318184, A318197.

%K nonn,easy

%O 0,3

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

%E Formula and more terms from _Vladeta Jovovic_, Aug 07 2003