[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086805
Primes in the numerator of the continued fraction rational approximation of zeta(3).
0
5, 113, 1987, 552493, 628313002458512784191921, 40755082849497410605337341, 6681921617166540622940410282864619819
OFFSET
0,1
PROG
(PARI) \Continued fractions rational approximation of numeric functions cfrac(m, f) = x=f; for(n=0, m, i=floor(x); x=1/(x-i); print1(i, ", ")) cfraczeta(m, f) = { cf = vector(100000); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer), print1(numer, ", ")); ) }
CROSSREFS
Sequence in context: A351148 A258177 A224897 * A163014 A199650 A241109
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Aug 05 2003
EXTENSIONS
The next term is too large to include.
STATUS
approved