[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078403
Primes whose digital root (A038194) is prime.
10
2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 59, 61, 79, 83, 97, 101, 113, 131, 137, 149, 151, 167, 173, 191, 223, 227, 239, 241, 257, 263, 277, 281, 293, 311, 313, 317, 331, 347, 349, 353, 367, 383, 389, 401, 419, 421, 439, 443, 457, 461, 479, 491, 509, 547, 563, 569
OFFSET
1,1
COMMENTS
Union of A061238, A061240, A061241 and 3. - Ya-Ping Lu, Jan 03 2024
EXAMPLE
59 is a term because 5+9=14, giving (final) iterated sum 1+4=5 and 5 is prime.
MATHEMATICA
Select[ Range[580], PrimeQ[ # ] && PrimeQ[Mod[ #, 9]] &]
Select[Prime[Range[200]], PrimeQ[Mod[#, 9]]&] (* Harvey P. Dale, Aug 20 2017 *)
PROG
(PARI) forprime(p=2, 997, if(isprime(p%9), print1(p, ", ")))
(Python) from sympy import isprime, primerange; [print(p, end = ', ') for p in primerange(2, 570) if isprime(p%9)] # Ya-Ping Lu, Jan 03 2024
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
N. J. A. Sloane, Dec 26 2002
EXTENSIONS
STATUS
approved