[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a078403 -id:a078403
     Sort: relevance | references | number | modified | created      Format: long | short | data
Iterated sum-of-digits of A078403(n).
+20
3
2, 3, 5, 7, 2, 5, 2, 5, 7, 2, 5, 7, 7, 2, 7, 2, 5, 5, 2, 5, 7, 5, 2, 2, 7, 2, 5, 7, 5, 2, 7, 2, 5, 5, 7, 2, 7, 5, 7, 2, 7, 5, 2, 5, 5, 7, 7, 2, 7, 2, 2, 5, 5, 7, 5, 2, 2, 5, 7, 5, 7, 2, 5, 2, 7, 2, 7, 7, 7, 5, 5, 5, 2, 2, 7, 2, 5, 7, 2, 2, 5, 2, 5, 2, 7, 5, 2, 5, 7, 5, 7, 7, 7, 2, 5, 2, 7, 2, 2, 5, 7, 2, 5, 7, 7
OFFSET
1,1
LINKS
Cino Hilliard, Proof of the Digital Root Theorem, posted on Yahoo group B2LCC, Feb 17 2003
PROG
(PARI) drp(n) = { forprime(x=2, n, r = x%9; if(isprime(r), print1(r" "); ); ); }
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Cino Hilliard, Dec 24 2002
EXTENSIONS
More terms from Joshua Zucker, Jul 24 2006
STATUS
approved
Primes congruent to {2, 3, 5, 7} mod 11.
+10
7
2, 3, 5, 7, 13, 29, 47, 71, 73, 79, 101, 113, 137, 139, 157, 167, 179, 181, 211, 223, 227, 233, 269, 271, 277, 293, 311, 313, 337, 359, 379, 401, 409, 421, 431, 443, 467, 487, 491, 509, 541, 557, 563, 577, 599, 601, 607, 619, 641, 643, 673, 709, 733, 739, 751
OFFSET
1,1
COMMENTS
Primes p such that p mod 11 is prime.
Primes of the form 11*n+r where n >= 0 and r is in {2, 3, 5, 7}.
LINKS
MATHEMATICA
Select[Prime[Range[600]], MemberQ[{2, 3, 5, 7}, Mod[#, 11]]&] (* Vincenzo Librandi, Aug 05 2012 *)
PROG
(Magma) [ p: p in PrimesUpTo(760) | p mod 11 in {2, 3, 5, 7} ];
[ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 11] | exists(u){ r: r in {2, 3, 5, 7} | p eq (11*n+r) } } ];
CROSSREFS
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Oct 28 2009
STATUS
approved
Primes congruent to {2, 3, 5, 7, 11} mod 12.
+10
7
2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 331, 347, 353, 359
OFFSET
1,1
COMMENTS
Primes p such that p mod 12 is prime.
Primes of the form 12*n+r where n >= 0 and r is in {2, 3, 5, 7, 11}.
Except for the prime 2, these are the primes that are encountered in the set of numbers {x, f(f(x))} where x is of the form 4k+3 with k>=0, and where f(x) is the 3x+1-problem function, and f(f(x)) the second iteration value. Indeed this sequence is the set union of 2 and A002145 (4k+3 primes) and A007528 (6k+5 primes), since f(f(4k+3))=6k+5. Equivalently one does not get any prime from A068228 (the complement of the present sequence). - Michel Marcus and Bill McEachen, May 07 2016
LINKS
MAPLE
isA167135 := n -> isprime(n) and not modp(n, 12) != 1:
select(isA167135, [$1..360]); # Peter Luschny, Mar 28 2018
MATHEMATICA
Select[Prime[Range[400]], MemberQ[{2, 3, 5, 7, 11}, Mod[#, 12]]&] (* Vincenzo Librandi, Aug 05 2012 *)
Select[Prime[Range[72]], Mod[#, 12] != 1 &] (* Peter Luschny, Mar 28 2018 *)
PROG
(Magma) [ p: p in PrimesUpTo(760) | p mod 12 in {2, 3, 5, 7, 11} ];
(Magma) [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 12] | exists(u){ r: r in {2, 3, 5, 7, 11} | p eq (12*n+r) } } ];
CROSSREFS
Subsequences: A002145, A007528. Complement: A068228.
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Oct 28 2009
STATUS
approved
Primes congruent to 2, 3, 5, 7 or 11 (mod 13).
+10
5
2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
OFFSET
1,1
COMMENTS
Primes which have a remainder mod 13 that is prime.
Union of A141858, A100202, A102732, A140371 and A140373. - R. J. Mathar, Oct 29 2009
LINKS
EXAMPLE
11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
MATHEMATICA
f[n_]:=PrimeQ[Mod[n, 13]]; lst={}; Do[p=Prime[n]; If[f[p], AppendTo[lst, p]], {n, 6, 6!}]; lst
Select[Prime[Range[4000]], MemberQ[{2, 3, 5, 7, 11}, Mod[#, 13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
PROG
(PARI) {forprime(p=2, 740, if(isprime(p%13), print1(p, ", ")))} \\ Klaus Brockhaus, Oct 28 2009
(Magma) [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009
CROSSREFS
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009
STATUS
approved
Primes such that iterated sum-of-digits (A038194) is a square.
+10
4
13, 19, 31, 37, 67, 73, 103, 109, 127, 139, 157, 163, 181, 193, 199, 211, 229, 271, 283, 307, 337, 373, 379, 397, 409, 433, 463, 487, 499, 523, 541, 571, 577, 607, 613, 631, 643, 661, 733, 739, 751, 757, 769, 787, 811, 823, 829, 859, 877, 883, 919, 937, 967
OFFSET
1,1
COMMENTS
Primes which are 1 or 4 mod 9. - Charles R Greathouse IV, Sep 04 2014
LINKS
FORMULA
a(n) ~ 3n log n. - Charles R Greathouse IV, Sep 04 2014
MAPLE
select(isprime, map(t -> (9*t+1, 9*t+4), [$1..1000])); # Robert Israel, Sep 04 2014
MATHEMATICA
sQ[n_]:=MemberQ[{1, 4, 9}, NestWhile[Total[IntegerDigits[#]]&, n, #>9&]]; Select[Prime[Range[300]], sQ] (* Harvey P. Dale, Dec 06 2012 *)
PROG
(PARI) forprime(p=2, 1000, if(issquare(p%9), print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Klaus Brockhaus, Dec 28 2002
STATUS
approved
Primes such that iterated sum-of-digits (A038194) is odd.
+10
3
3, 5, 7, 19, 23, 37, 41, 43, 59, 61, 73, 79, 97, 109, 113, 127, 131, 149, 151, 163, 167, 181, 199, 223, 239, 241, 257, 271, 277, 293, 307, 311, 313, 331, 347, 349, 367, 379, 383, 397, 401, 419, 421, 433, 439, 457, 487, 491, 509, 523, 541, 547, 563, 577, 599
OFFSET
1,1
COMMENTS
Subsequence of primes of A187318. - Michel Marcus, Jun 08 2015
Primes congruent to 1, 3, 5, 7 mod 18. - Robert Israel, Jun 08 2015
LINKS
MAPLE
select(isprime, [3, seq(seq(i*18+j, j=[1, 5, 7]), i=0..100)]); # Robert Israel, Jun 08 2015
MATHEMATICA
Select[Prime[Range[120]], OddQ[Mod[#, 9]] &] (* Bruno Berselli, Aug 31 2012 *)
PROG
(PARI) forprime(p=2, 600, if((p%9)%2==1, print1(p, ", ")))
(Magma) [p: p in PrimesUpTo(600) | p mod 18 in [1, 3, 5, 7]]; // Vincenzo Librandi, Jun 07 2015
(Magma) [a: n in [0..1000] | IsPrime(a) where a is Floor(9*n/5)]; // Vincenzo Librandi, Jun 08 2015
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Klaus Brockhaus, Dec 28 2002
STATUS
approved
Primes such that iterated sum-of-digits (A038194) is even.
+10
2
2, 11, 13, 17, 29, 31, 47, 53, 67, 71, 83, 89, 101, 103, 107, 137, 139, 157, 173, 179, 191, 193, 197, 211, 227, 229, 233, 251, 263, 269, 281, 283, 317, 337, 353, 359, 373, 389, 409, 431, 443, 449, 461, 463, 467, 479, 499, 503, 521, 557, 569, 571, 587, 593, 607
OFFSET
1,1
MATHEMATICA
Select[Prime[Range[120]], EvenQ[Mod[#, 9]] &] (* Bruno Berselli, Aug 31 2012 *)
PROG
(PARI) forprime(p=2, 600, if((p%9)%2==0, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Klaus Brockhaus, Dec 28 2002
STATUS
approved
Palindromic primes with prime digital roots.
+10
1
2, 3, 5, 7, 11, 101, 131, 151, 191, 313, 353, 383, 727, 797, 929, 10301, 10501, 11311, 12821, 13331, 13831, 15451, 16061, 16661, 17471, 17971, 19391, 19991, 30103, 30803, 32423, 35053, 35753, 36263, 36563, 37573, 38183, 38783, 70207, 70607
OFFSET
1,1
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Lekraj Beedassy, Mar 08 2009
EXTENSIONS
Corrected and extended by Ray Chandler, Mar 12 2009
STATUS
approved
The number of primes less than 10^n whose digital root (A038194) is also prime.
+10
0
4, 15, 85, 619, 4800, 39266, 332276, 2880818, 25423985, 227527467
OFFSET
1,1
EXAMPLE
a(2) = 15 because the only primes less than 100 whose have digital roots are also prime are {2,3,5,7,11,23,29,41,43,47,59,61,79,83,97}.
MATHEMATICA
c = 0; k = 1; Do[ While[ k < 10^n, If[ PrimeQ[k] && PrimeQ[ Mod[k, 9]], c++ ]; k++ ]; Print[c], {n, 1, 8}]
PROG
(Python)
# use primerange (slower) vs. sieve.primerange (>> memory) for larger terms
from sympy import isprime, sieve
def afind(terms):
s = 0
for n in range(1, terms+1):
s += sum(isprime(p%9) for p in sieve.primerange(10**(n-1), 10**n))
print(s, end=", ")
afind(7) # Michael S. Branicky, Apr 15 2021
CROSSREFS
The primes are in A078403, their digital roots are in A078400.
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Dec 27 2002
EXTENSIONS
a(9)-a(10) from Michael S. Branicky, Apr 15 2021
STATUS
approved
Primes with prime subscripts whose digits are primes, whose digital root is prime, whose sum of digits is prime and whose reversal is also prime.
+10
0
3, 5, 353, 32732237, 35225327, 75527537, 75535277, 75557723, 75737723, 75755257, 77322233, 77752733, 322375577, 322775737, 325725577, 325773727, 337735553, 352272233, 355322777, 357333377, 357735773, 372577727, 372753727, 375577733, 375722377, 375727237, 377725723, 377752723
OFFSET
1,1
COMMENTS
Intersection of A006450, A007500, A019546, A028834 and A078403.
EXAMPLE
32732237 is in the sequence because 32732237 is the 2016197-th prime number, 2016197 is prime, digits 2, 3 and 7 are primes, 32732237 -> 3 + 2 + 7 + 3 + 2 + 2 + 3 + 7 = 29 (is prime) -> 2 + 9 = 11 -> 1 + 1 = 2, 2 is prime and 73223723 is also prime.
MATHEMATICA
Select[Table[Prime[Prime[n]], {n, 1500000}], Complement[IntegerDigits[#1], {2, 3, 5, 7}] == {} && PrimeQ[#1 - 9 Floor[(#1 - 1)/9]] && PrimeQ[Total[IntegerDigits[#1]]] && PrimeQ[FromDigits[Reverse[IntegerDigits[#1]]]] & ]
KEYWORD
nonn,base
AUTHOR
Ilya Gutkovskiy, Nov 08 2016
STATUS
approved

Search completed in 0.013 seconds