Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 22 2024 06:35:16
%S 2,3,5,7,11,23,29,41,43,47,59,61,79,83,97,101,113,131,137,149,151,167,
%T 173,191,223,227,239,241,257,263,277,281,293,311,313,317,331,347,349,
%U 353,367,383,389,401,419,421,439,443,457,461,479,491,509,547,563,569
%N Primes whose digital root (A038194) is prime.
%C Union of A061238, A061240, A061241 and 3. - _Ya-Ping Lu_, Jan 03 2024
%e 59 is a term because 5+9=14, giving (final) iterated sum 1+4=5 and 5 is prime.
%t Select[ Range[580], PrimeQ[ # ] && PrimeQ[Mod[ #, 9]] &]
%t Select[Prime[Range[200]],PrimeQ[Mod[#,9]]&] (* _Harvey P. Dale_, Aug 20 2017 *)
%o (PARI) forprime(p=2,997,if(isprime(p%9),print1(p,",")))
%o (Python) from sympy import isprime, primerange; [print(p, end = ', ') for p in primerange(2, 570) if isprime(p%9)] # _Ya-Ping Lu_, Jan 03 2024
%Y Cf. A038194, A061238, A061240, A061241, A070027, A078400.
%K base,easy,nonn
%O 1,1
%A _N. J. A. Sloane_, Dec 26 2002
%E Extended by _Robert G. Wilson v_, _Klaus Brockhaus_ and _Rick L. Shepherd_, Dec 27 2002