[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077456
a(n) = sigma_5(n^5)/sigma(n^5).
4
1, 549791, 2337334621, 567767102431, 76323251878121, 1285045538614211, 68398022066406901, 595065340418751455, 8138648440293876241, 41961836973324022711, 611595047235520833101, 1327061705176829563651, 17543094367661056941241, 37604616949911916507691
OFFSET
1,2
LINKS
FORMULA
a(n) = A001160(n^5)/A000203(n^5).
Multiplicative with a(p^e) = (p^(20*e+4) + p^(15*e+3) + p^(10*e+2) + p^(5*e+1) + 1)/(p^4 + p^3 + p^2 + p + 1). - Amiram Eldar, Sep 09 2020
MATHEMATICA
f[p_, e_] := (p^(20*e+4) + p^(15*e+3) + p^(10*e+2) + p^(5*e+1) + 1)/(p^4 + p^3 + p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 20] (* Amiram Eldar, Sep 09 2020 *)
Table[DivisorSigma[5, n^5]/DivisorSigma[1, n^5], {n, 20}] (* Harvey P. Dale, Mar 05 2022 *)
PROG
(PARI) a(n)=sumdiv(n^5, d, d^5)/sigma(n^5)
(PARI) a(n) = my(f=factor(n^5)); sigma(f, 5)/sigma(f); \\ Michel Marcus, Sep 09 2020
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Benoit Cloitre, Nov 30 2002
STATUS
approved