[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma_5(n^5)/sigma(n^5).
4

%I #19 Aug 22 2024 04:47:42

%S 1,549791,2337334621,567767102431,76323251878121,1285045538614211,

%T 68398022066406901,595065340418751455,8138648440293876241,

%U 41961836973324022711,611595047235520833101,1327061705176829563651,17543094367661056941241,37604616949911916507691

%N a(n) = sigma_5(n^5)/sigma(n^5).

%H Amiram Eldar, <a href="/A077456/b077456.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A001160(n^5)/A000203(n^5).

%F Multiplicative with a(p^e) = (p^(20*e+4) + p^(15*e+3) + p^(10*e+2) + p^(5*e+1) + 1)/(p^4 + p^3 + p^2 + p + 1). - _Amiram Eldar_, Sep 09 2020

%t f[p_, e_] := (p^(20*e+4) + p^(15*e+3) + p^(10*e+2) + p^(5*e+1) + 1)/(p^4 + p^3 + p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 20] (* _Amiram Eldar_, Sep 09 2020 *)

%t Table[DivisorSigma[5,n^5]/DivisorSigma[1,n^5],{n,20}] (* _Harvey P. Dale_, Mar 05 2022 *)

%o (PARI) a(n)=sumdiv(n^5,d,d^5)/sigma(n^5)

%o (PARI) a(n) = my(f=factor(n^5)); sigma(f, 5)/sigma(f); \\ _Michel Marcus_, Sep 09 2020

%Y Cf. A000203, A000584, A001160, A057660, A077454, A077455.

%K nonn,easy,mult

%O 1,2

%A _Benoit Cloitre_, Nov 30 2002