OFFSET
0,3
COMMENTS
For n<100 this is equal to the digital sum of n (see A007953). - Hieronymus Fischer, Jun 17 2007
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
FORMULA
From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = n - 9*floor(n/10).
a(n) = (n + 9*(n mod 10))/10.
a(n) = (n + 9*A010879(n))/10.
G.f.: x*(8*x^10 - 9*x^9 + 1)/((1 - x^10)*(1 - x)^2). (End)
a(n) = A033930(n) for 1 <= n < 100. - R. J. Mathar, Sep 21 2008
a(n) = +a(n-1) + a(n-10) - a(n-11). - R. J. Mathar, Feb 20 2011
EXAMPLE
a(15) = floor(15 / 10) + (15 mod 10) = 1 + 5 = 6. - Indranil Ghosh, Feb 13 2017
MATHEMATICA
Table[n - 9 Floor[n / 10], {n, 0, 100}] (* Vincenzo Librandi Dec 10 2016 *)
PROG
(Haskell)
a076314 = uncurry (+) . flip divMod 10 -- Reinhard Zumkeller, Jun 01 2013
(PARI) a(n)=n\10+n%10 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [n-9*Floor(n/10):n in [0..100]]; // Vincenzo Librandi, Dec 10 2016
(Python) def A076314(n): return (n/10)+(n%10) # Indranil Ghosh, Feb 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 06 2002
STATUS
approved