[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066318
Number of necklaces with n labeled beads of 2 colors.
7
2, 4, 16, 96, 768, 7680, 92160, 1290240, 20643840, 371589120, 7431782400, 163499212800, 3923981107200, 102023508787200, 2856658246041600, 85699747381248000, 2742391916199936000, 93241325150797824000, 3356687705428721664000, 127554132806291423232000
OFFSET
1,1
COMMENTS
In the normal probability distribution with mean 0 and standard deviation 1, the expected value E[|x|^(2n-1)] = a(n)/sqrt(2*Pi), while E[|x|^(2n)] = E[x^(2n)] = A001147(n). - Stanislav Sykora, Jan 15 2017
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 66 (2.1.27,29).
LINKS
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
Wikipedia, Normal distribution, formula for E(|x|^p).
FORMULA
a(n) = (n-1)!*2^n.
E.g.f.: log(1/(1-2*x)).
Let gd(x,n) = (d^n/dx^n)(exp(-(1/2)*x^2)*sqrt(2)/(2*sqrt(Pi))) = (-1)^((1/2)*n)*(x^2)^((1/2)*n)*2^(-(1/2)*n+1/2)*(exp(I*Pi*n)+1)/(4*sqrt(Pi)*GAMMA(1+(1/2)*n)) be the n-th derivative of the standard Gaussian distribution. Evaluating gd(x,n) at x=1 gives gd(1,n) = 2^(-(1/2)*n+1/2)*(exp(I*Pi*n)+1)*(-1)^((1/2)*n)/(4*sqrt(Pi)*GAMMA(1+(1/2)*n)). A066318 is the denominator of the even summands of the Taylor series expansion of the Gaussian distribution evaluated at x=1. a(n)=denom(gd(1, 2*n))/sqrt(Pi). - Stephen Crowley, May 16 2009
a(n) = 2*(n-1)*a(n-1). - R. J. Mathar, Sep 10 2012
G.f.: G(0), where G(k)= 1 + 1/(1 - 1/(1 + 1/(2*k+2)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
a(n) = 2 * (2*n-2)!! = 2 * A000165(n-1). - Alois P. Heinz, Jun 22 2017
a(n) = (sqrt(Pi)/Gamma((2*n+3)/2))*Product_{k=0..n-1} binomial(2*(n-k)+1,2). - Stefano Spezia, Nov 17 2018
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(e)/2 (A019775).
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/(2*sqrt(e)). (End)
MAPLE
with(combstruct):A:=[N, {N=Cycle(Union(Z$2))}, labeled]: seq(count(A, size=n), n=1..18); # Zerinvary Lajos, Oct 07 2007
# alternative Maple program:
a:= n-> 2*doublefactorial(2*n-2):
seq(a(n), n=1..20); # Alois P. Heinz, Jun 22 2017
MATHEMATICA
mx = 18; Rest[ Range[0, mx]! CoefficientList[ Series[ Log[1/(1 - 2 x)], {x, 0, mx}], x]] (* Robert G. Wilson v, Sep 22 2011 *)
Table[(n-1)!*2^n, {n, 20}] (* Harvey P. Dale, Dec 15 2011 *)
PROG
(Magma) [Factorial(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Sep 23 2011
(PARI) apply( A066318=n->(n-1)!<<n , [1..18]) \\ M. F. Hasler, Jan 15 2017
(GAP) a_n:=List([1..10], n->Factorial(n-1)*2^n); # Stefano Spezia, Nov 17 2018
(Python) import math
for n in range(1, 10): print(math.factorial(n-1)*2**n, end=', ') # Stefano Spezia, Nov 17 2018
(Maxima) a(n):=(n-1)!*2^n$ makelist(a(n), n, 1, 10); /* Stefano Spezia, Nov 21 2018 */
(Sage) [2^n*factorial(n-1) for n in (1..20)] # G. C. Greubel, Nov 21 2018
CROSSREFS
Apart from initial term, same as A032184.
Sequence in context: A009565 A009838 A088335 * A308606 A066952 A281964
KEYWORD
nonn
AUTHOR
Christian G. Bower, Dec 13 2001
STATUS
approved