[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064856
Stirling transform of Catalan numbers: a(n) = Sum_{k=0..n} stirling2(n,k)*binomial(2*k,k)/(k+1).
14
1, 1, 3, 12, 59, 338, 2185, 15613, 121553, 1020170, 9154963, 87276995, 879242215, 9319182044, 103537712361, 1201967382478, 14540040004755, 182840037042560, 2384985091689409, 32209645344213417, 449608555748234353, 6476887237235672388, 96156363230696213447
OFFSET
0,3
LINKS
FORMULA
O.g.f.: Sum_{n>=1} C(2*n,n)/(n+1) * x^n / Product_{k=0..n} (1-k*x). - Paul D. Hanna, Jul 20 2011
E.g.f.: exp(2*exp(z)-2)*(BesselI(0, 2*exp(z)-2)-BesselI(1, 2*exp(z)-2)). Representation as a sum of an infinite series involving the confluent hypergeometric function 1F1, in Maple notation: a(n)=evalf(sum('k'^n*2^(2*'k')*GAMMA('k'+1/2)*evalf(hypergeom(['k'+1/2], ['k'+2], -4))/(sqrt(Pi)*'k'!*('k'+1)!), 'k'=0..infinity)), n=0, 1...
E.g.f.: hypergeom([1/2], [2], 4*(exp(x)-1)). - Vladeta Jovovic, Sep 11 2003
MAPLE
seq(add(Stirling2(n, k)*binomial(2*k, k)/(k+1), k=0..n), n=0..50); # Robert Israel, Sep 16 2016
MATHEMATICA
Table[Sum[StirlingS2[n, k] Binomial[2k, k]/(k+1), {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Nov 01 2011 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!/(m!*(m+1)!)*x^m/prod(k=1, m, 1-k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
Karol A. Penson, Oct 08 2001
STATUS
approved