[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196710
G.f.: A(x) = INV(x-x^2 - x^2*INV(x-2*x^2 - x^2*INV(x-3*x^2 - x^2*INV(x-4*x^2 - x^2*INV(x-5*x^2 - ...))))), where INV(F(x)) = series reversion of F(x).
2
1, 1, 3, 12, 59, 340, 2240, 16583, 136185, 1229220, 12119025, 129957670, 1510458859, 18958901987, 255980593558, 3703327622812, 57208927916093, 941005426734340, 16442518936115083, 304566619900207724, 5967901050385272977, 123436972340208737237, 2689201938559338920299
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 59*x^5 + 340*x^6 + 2240*x^7 +...
where A(x) results from nested inversions of shifted series:
A(x) = Series_Reversion(x-x^2 - x^2*B(x)), where
B(x) = x + 2*x^2 + 9*x^3 + 53*x^4 + 366*x^5 + 2849*x^6 + 24591*x^7 +...
B(x) = Series_Reversion(x-2*x^2 - x^2*C(x)), where
C(x) = x + 3*x^2 + 19*x^3 + 154*x^4 + 1431*x^5 + 14632*x^6 + 161808*x^7 +...
C(x) = Series_Reversion(x-3*x^2 - x^2*D(x)), where
D(x) = x + 4*x^2 + 33*x^3 + 345*x^4 + 4094*x^5 + 52855*x^6 + 728291*x^7 +...
D(x) = Series_Reversion(x-4*x^2 - x^2*E(x)), where
E(x) = x + 5*x^2 + 51*x^3 + 656*x^4 + 9531*x^5 + 149804*x^6 + 2495784*x^7 +...
E(x) = Series_Reversion(x-5*x^2 - x^2*F(x)), where
F(x) = x + 6*x^2 + 73*x^3 + 1117*x^4 + 19254*x^5 + 357925*x^6 + 7026015*x^7 +...
F(x) = Series_Reversion(x-6*x^2 - x^2*G(x)), where
G(x) = x + 7*x^2 + 99*x^3 + 1758*x^4 + 35111*x^5 + 754864*x^6 + 17098376*x^7 +...
PROG
(PARI) {a(n)=local(G=x+x^2); for(k=0, n, G=serreverse(x-(n-k+1)*x^2 - x^2*G+x^3*O(x^n))); polcoeff(G, n)}
CROSSREFS
Cf. A196711.
Sequence in context: A179325 A064856 A080337 * A196711 A304788 A101054
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 05 2011
STATUS
approved