[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192768
G.f. satisfies: A(x) = Product_{n>=1} 1/(1 - x^n*A(x)^(n^2)).
2
1, 1, 3, 12, 59, 328, 1987, 12819, 86840, 611993, 4458355, 33425634, 257101218, 2024379762, 16292282944, 133886553125, 1122781620139, 9605824882455, 83838618087996, 746620718694421, 6786473727400695, 62988617523112588, 597257517555481856
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = exp( Sum_{n>=1} (x^n/n)*Sum_{d|n} d*A(x)^(n*d) ).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 59*x^4 + 328*x^5 + 1987*x^6 +...
The g.f. A = A(x) satisfies the product:
A = 1/((1 - x*A)*(1 - x^2*A^4)*(1 - x^3*A^9)*(1 - x^4*A^16)*...)
as well as the logarithmic series:
log(A) = x*A + x^2*(A^2 + 2*A^4)/2 + x^3*(A^3 + 3*A^9)/3 + x^4*(A^4 + 2*A^8 + 4*A^16)/4 + x^5*(A^5 + 5*A^25)/5 + x^6*(A^6 + 2*A^12 + 3*A^18 + 6*A^36)/6 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, 1-x^k*A^(k^2)+x*O(x^n))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x^m/m)*sumdiv(m, d, d*A^(m*d))+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A181328 A058861 A105668 * A179325 A064856 A080337
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 09 2011
STATUS
approved