[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053195
Number of level permutations of degree n.
3
1, 1, 2, 3, 18, 45, 360, 1575, 20790, 99225, 1332450, 9823275, 181496700, 1404728325, 26221595400, 273922023375, 7196040101250, 69850115960625, 1662139682453250, 22561587455281875, 675158520854317500, 9002073394657468125, 259715927440434465000
OFFSET
0,3
COMMENTS
A permutation is level if the powers of 2 dividing its cycle lengths are all equal.
For odd n, level permutations of degree n are just permutations that have odd order, i.e., A053195(2*n+1) = A000246(2*n+1). - Vladeta Jovovic, Sep 29 2004
LINKS
L. Babai and P. J. Cameron, Automorphisms and enumeration of switching classes of tournaments, Electron. J. Combin., 7 (2000), no. 1, Research Paper 38, 25 pp.
MAPLE
with(combinat):
b:= proc(n, i, p) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j*
b(n-i*j, i-2*p, p), j=0..n/i)))
end:
a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
)(iquo(n, 2^j))*2^j, 2^j), j=0..m)))(ilog2(n)):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 11 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, p_] := b[n, i, p] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*(i-1)!^j*b[n - i*j, i-2*p, p], {j, 0, n/i}]]]; a[n_] := Function[{m}, If[n == 0, 1, Sum[ b[n, Function [{h}, h - 1 + Mod[h, 2]][Quotient[n, 2^j]]*2^j, 2^j], {j, 0, m}]]][Log[2, n] // Floor]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 07 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A163910 A064777 A137784 * A347429 A211867 A003693
KEYWORD
nonn,nice
AUTHOR
Vladeta Jovovic, Mar 02 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 11 2015
STATUS
approved