[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053197
Number of level partitions of n.
2
1, 1, 2, 2, 4, 3, 6, 5, 10, 8, 13, 12, 21, 18, 27, 27, 42, 38, 54, 54, 77, 76, 101, 104, 143, 142, 183, 192, 249, 256, 323, 340, 432, 448, 550, 585, 722, 760, 918, 982, 1190, 1260, 1502, 1610, 1917, 2048, 2408, 2590, 3053, 3264, 3800, 4097, 4765, 5120, 5910, 6378
OFFSET
0,3
COMMENTS
A partition is level if the powers of 2 dividing its parts are all equal.
LINKS
FORMULA
a(n) = Sum_{k=0..A007814(n)} A000009(n/2^k). a(2*n+1) = A000009(2*n+1) = A078408(n). - Vladeta Jovovic, Sep 29 2004
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-p, p), j=0..n/i)))
end:
a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
)(iquo(n, 2^j))*2^j, 2^(1+j)), j=0..m)))(ilog2(n)):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 11 2015
MATHEMATICA
a[n_] := Sum[ PartitionsQ[n/2^k], {k, 0, IntegerExponent[n, 2]}]; Table[ a[n], {n, 1, 55}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
CROSSREFS
Sequence in context: A239966 A341465 A304406 * A275234 A301768 A088145
KEYWORD
nonn,nice
AUTHOR
Vladeta Jovovic, Mar 02 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 11 2015
STATUS
approved