[go: up one dir, main page]

login
A052217
Numbers whose sum of digits is 3.
44
3, 12, 21, 30, 102, 111, 120, 201, 210, 300, 1002, 1011, 1020, 1101, 1110, 1200, 2001, 2010, 2100, 3000, 10002, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000, 20001, 20010, 20100, 21000, 30000, 100002, 100011, 100020, 100101
OFFSET
1,1
COMMENTS
From Joshua S.M. Weiner, Oct 19 2012: (Start)
Sequence is a representation of the "energy states" of "multiplex" notation of 3 quantum of objects in a juggling pattern.
0 = an empty site, or empty hand. 1 = one object resides in the site. 2 = two objects reside in the site. 3 = three objects reside in the site. (See A038447.) (End)
A007953(a(n)) = 3; number of repdigits = #{3,111} = A242627(3) = 2. - Reinhard Zumkeller, Jul 17 2014
Can be seen as a table whose n-th row holds the n-digit terms {10^(n-1) + 10^m + 10^k, 0 <= k <= m < n}, n >= 1. Row lengths are then (1, 3, 6, 10, ...) = n*(n+1)/2 = A000217(n). The first and the n last terms of row n are 10^(n-1) + 2 resp. 2*10^(n-1) + 10^k, 0 <= k < n. - M. F. Hasler, Feb 19 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms 1..84 from Vincenzo Librandi, terms 85..1140 from T. D. Noe)
FORMULA
T(n,k) = 10^(n-1) + 10^A003056(k) + 10^A002262(k) when read as a table with row lengths n*(n+1)/2, n >= 1, 0 <= k < n*(n+1)/2. - M. F. Hasler, Feb 19 2020
a(n) = 10^A056556(n-1) + 10^A056557(n-1) + 10^A056558(n-1). - Kevin Ryde, Apr 17 2021
MATHEMATICA
Union[FromDigits/@Select[Flatten[Table[Tuples[Range[0, 3], n], {n, 6}], 1], Total[#]==3&]] (* Harvey P. Dale, Oct 20 2012 *)
Select[Range[10^6], Total[IntegerDigits[#]] == 3 &] (* Vincenzo Librandi, Mar 07 2013 *)
Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 18]], {s, IntegerPartitions[3]}]]] (* T. D. Noe, Mar 08 2013 *)
PROG
(Magma) [n: n in [1..100101] | &+Intseq(n) eq 3 ]; // Vincenzo Librandi, Mar 07 2013
(Haskell)
a052217 n = a052217_list !! (n-1)
a052217_list = filter ((== 3) . a007953) [0..]
-- Reinhard Zumkeller, Jul 17 2014
(PARI) isok(n) = sumdigits(n) == 3; \\ Michel Marcus, Dec 28 2015
(PARI) apply( {A052217_row(n, s, t=-1)=vector(n*(n+1)\2, k, t++>s&&t=!s++; 10^(n-1)+10^s+10^t)}, [1..5]) \\ M. F. Hasler, Feb 19 2020
(Python)
from itertools import count, islice
def agen(): yield from (10**i + 10**j + 10**k for i in count(0) for j in range(i+1) for k in range(j+1))
print(list(islice(agen(), 40))) # Michael S. Branicky, May 14 2022
CROSSREFS
Cf. A007953, A218043 (subsequence).
Row n=3 of A245062.
Other digit sums: A011557 (1), A052216 (2), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Other bases: A014311 (binary), A226636 (ternary), A179243 (Zeckendorf).
Cf. A003056, A002262 (triangular coordinates), A056556, A056557, A056558 (tetrahedral coordinates).
Sequence in context: A017197 A051369 A069538 * A119507 A044436 A210282
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Feb 01 2000
EXTENSIONS
Offset changed from 0 to 1 by Vincenzo Librandi, Mar 07 2013
STATUS
approved