OFFSET
1,1
COMMENTS
From Joshua S.M. Weiner, Oct 19 2012: (Start)
Sequence is a representation of the "energy states" of "multiplex" notation of 3 quantum of objects in a juggling pattern.
0 = an empty site, or empty hand. 1 = one object resides in the site. 2 = two objects reside in the site. 3 = three objects reside in the site. (See A038447.) (End)
A007953(a(n)) = 3; number of repdigits = #{3,111} = A242627(3) = 2. - Reinhard Zumkeller, Jul 17 2014
Can be seen as a table whose n-th row holds the n-digit terms {10^(n-1) + 10^m + 10^k, 0 <= k <= m < n}, n >= 1. Row lengths are then (1, 3, 6, 10, ...) = n*(n+1)/2 = A000217(n). The first and the n last terms of row n are 10^(n-1) + 2 resp. 2*10^(n-1) + 10^k, 0 <= k < n. - M. F. Hasler, Feb 19 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms 1..84 from Vincenzo Librandi, terms 85..1140 from T. D. Noe)
FORMULA
T(n,k) = 10^(n-1) + 10^A003056(k) + 10^A002262(k) when read as a table with row lengths n*(n+1)/2, n >= 1, 0 <= k < n*(n+1)/2. - M. F. Hasler, Feb 19 2020
MATHEMATICA
Union[FromDigits/@Select[Flatten[Table[Tuples[Range[0, 3], n], {n, 6}], 1], Total[#]==3&]] (* Harvey P. Dale, Oct 20 2012 *)
Select[Range[10^6], Total[IntegerDigits[#]] == 3 &] (* Vincenzo Librandi, Mar 07 2013 *)
Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 18]], {s, IntegerPartitions[3]}]]] (* T. D. Noe, Mar 08 2013 *)
PROG
(Magma) [n: n in [1..100101] | &+Intseq(n) eq 3 ]; // Vincenzo Librandi, Mar 07 2013
(Haskell)
a052217 n = a052217_list !! (n-1)
a052217_list = filter ((== 3) . a007953) [0..]
-- Reinhard Zumkeller, Jul 17 2014
(PARI) isok(n) = sumdigits(n) == 3; \\ Michel Marcus, Dec 28 2015
(PARI) apply( {A052217_row(n, s, t=-1)=vector(n*(n+1)\2, k, t++>s&&t=!s++; 10^(n-1)+10^s+10^t)}, [1..5]) \\ M. F. Hasler, Feb 19 2020
(Python)
from itertools import count, islice
def agen(): yield from (10**i + 10**j + 10**k for i in count(0) for j in range(i+1) for k in range(j+1))
print(list(islice(agen(), 40))) # Michael S. Branicky, May 14 2022
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Feb 01 2000
EXTENSIONS
Offset changed from 0 to 1 by Vincenzo Librandi, Mar 07 2013
STATUS
approved