[go: up one dir, main page]

login
A052220
Numbers whose sum of digits is 6.
34
6, 15, 24, 33, 42, 51, 60, 105, 114, 123, 132, 141, 150, 204, 213, 222, 231, 240, 303, 312, 321, 330, 402, 411, 420, 501, 510, 600, 1005, 1014, 1023, 1032, 1041, 1050, 1104, 1113, 1122, 1131, 1140, 1203, 1212, 1221, 1230, 1302, 1311, 1320, 1401, 1410
OFFSET
1,1
COMMENTS
A007953(a(n)) = 6; number of repdigits = #{6,33,222,111111} = A242627(6) = 4. - Reinhard Zumkeller, Jul 17 2014
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..12376 (terms 1..924 from Vincenzo Librandi; all terms with <= 12 digits)
MATHEMATICA
Select[Range[10^4], Total[IntegerDigits[#]] == 6 &] (* Vincenzo Librandi, Mar 07 2013 *)
PROG
(Magma) [n: n in [1..1500] | &+Intseq(n) eq 6 ]; // Vincenzo Librandi, Mar 07 2013
(Haskell)
a052220 n = a052220_list !! (n-1)
a052220_list = filter ((== 6) . a007953) [0..]
-- Reinhard Zumkeller, Jul 17 2014
(Python)
from sympy.utilities.iterables import multiset_permutations
def auptodigs(maxdigits):
alst = []
for d in range(1, maxdigits+1):
digset = "0"*(d-1) + "11111122233456"
for p in multiset_permutations(digset, d):
if p[0] != '0' and sum(map(int, p)) == 6:
alst.append(int("".join(p)))
return alst
print(auptodigs(4)) # Michael S. Branicky, Jun 15 2021
CROSSREFS
Cf. A007953.
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Sequence in context: A055040 A017233 A122709 * A217747 A341007 A345959
KEYWORD
nonn,base,easy
AUTHOR
Henry Bottomley, Feb 01 2000
EXTENSIONS
Offset changed from Bruno Berselli, Mar 07 2013
STATUS
approved