[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052022
Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists).
7
12, 50, 70, 308, 364, 476, 1729, 4784, 9947, 8959, 38998, 588965, 179998, 1879859, 5988788, 38778989, 79693999, 287978998, 1489989599, 4595969989, 6888999949, 45999897788, 197999598599, 3999966997975, 6849998899886, 7885998969988, 35889999789995, 39969896999968
OFFSET
2,1
COMMENTS
Does there exist a solution for every prime p?
LINKS
EXAMPLE
p=43 -> a(14)=179998 -> 1+7+9+9+9+8 = 43 and 179998 = 2*7*13*23*43. p=47 -> a(15)=1879859 -> 1+8+7+9+8+5+9 = 47 and 1879859 = 23*37*47*47.
MAPLE
A052022(n) = {
local( p, m );
p=prime(n) ;
for(k=2, 1000000000,
m=k*p;
if( A007953(m) == p && A006530(m) == p,
return(m) ;
)
) ;
} # R. J. Mathar, Mar 02 2012
MATHEMATICA
snm[n_]:=Module[{k=2, p=Prime[n], m}, m=k p; While[Total[ IntegerDigits[ m]]!=p||FactorInteger[m][[-1, 1]]!=p, k++; m=k p]; m]; Array[snm, 18, 2] (* Harvey P. Dale, Feb 28 2012 *)
PROG
(PARI) a(n) = my(p=prime(n), k=2, m=k*p); while ((sumdigits(m) != p) || (vecmax(factor(m)[, 1]) != p), k++; m = k*p); m; \\ Michel Marcus, Apr 09 2021
KEYWORD
nonn,base,nice
AUTHOR
Patrick De Geest, Nov 15 1999
EXTENSIONS
a(20)-a(29) from Donovan Johnson, May 09 2012
STATUS
approved