[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists).
7

%I #31 Apr 09 2021 10:42:39

%S 12,50,70,308,364,476,1729,4784,9947,8959,38998,588965,179998,1879859,

%T 5988788,38778989,79693999,287978998,1489989599,4595969989,6888999949,

%U 45999897788,197999598599,3999966997975,6849998899886,7885998969988,35889999789995,39969896999968

%N Smallest number m larger than prime(n) such that prime(n) = sum of digits of m and prime(n) = largest prime factor of m (or 0 if no such number exists).

%C Does there exist a solution for every prime p?

%H Chai Wah Wu, <a href="/A052022/b052022.txt">Table of n, a(n) for n = 2..34</a>

%e p=43 -> a(14)=179998 -> 1+7+9+9+9+8 = 43 and 179998 = 2*7*13*23*43. p=47 -> a(15)=1879859 -> 1+8+7+9+8+5+9 = 47 and 1879859 = 23*37*47*47.

%p A052022(n) = {

%p local( p,m );

%p p=prime(n) ;

%p for(k=2,1000000000,

%p m=k*p;

%p if( A007953(m) == p && A006530(m) == p,

%p return(m) ;

%p )

%p ) ;

%p } # _R. J. Mathar_, Mar 02 2012

%t snm[n_]:=Module[{k=2,p=Prime[n],m},m=k p;While[Total[ IntegerDigits[ m]]!=p||FactorInteger[m][[-1,1]]!=p,k++;m=k p];m]; Array[snm,18,2] (* _Harvey P. Dale_, Feb 28 2012 *)

%o (PARI) a(n) = my(p=prime(n), k=2, m=k*p); while ((sumdigits(m) != p) || (vecmax(factor(m)[,1]) != p), k++; m = k*p); m; \\ _Michel Marcus_, Apr 09 2021

%Y Cf. A052018, A052019, A052020, A052021, A007953, A005349, A028834.

%K nonn,base,nice

%O 2,1

%A _Patrick De Geest_, Nov 15 1999

%E a(20)-a(29) from _Donovan Johnson_, May 09 2012