[go: up one dir, main page]

login
A050999
Sum of squares of odd divisors of n.
33
1, 1, 10, 1, 26, 10, 50, 1, 91, 26, 122, 10, 170, 50, 260, 1, 290, 91, 362, 26, 500, 122, 530, 10, 651, 170, 820, 50, 842, 260, 962, 1, 1220, 290, 1300, 91, 1370, 362, 1700, 26, 1682, 500, 1850, 122, 2366, 530, 2210, 10, 2451, 651, 2900, 170, 2810, 820, 3172, 50, 3620, 842, 3482
OFFSET
1,3
COMMENTS
Denoted by Delta_2(n) in Glaisher 1907. - Michael Somos, May 17 2013
The sum of squares of even divisors of 2*k = 4*A001157(k), and the sum of squares of even divisors of 2*k-1 vanishes, for k >= 1. - Wolfdieter Lang, Jan 07 2017
REFERENCES
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
LINKS
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
R. J. Mathar, Survey of Dirichlet Series of Multiplicative Arithmetic Functions, arXiv:1106.4038 [math.NT], 2011, eq. (3.74).
Eric Weisstein's World of Mathematics, Odd Divisor Function.
FORMULA
From Vladeta Jovovic, Sep 10 2001: (Start)
Multiplicative with a(p^e) = 1 if p = 2, (p^(2e+2)-1)/(p^2-1) if p > 2.
a(n) = (1/2)*Sum_{d|n} (1-(-1)^d)*d^2.
a(2n) = sigma_2(2n) - 4*sigma_2(n), a(2n+1) = sigma_2(2n+1), where sigma_2(n) is sum of squares of divisors of n (A001157).
More generally, if b(n, k) is the sum of k-th powers of odd divisors of n then b(2n, k) = sigma_k(2n)-2^k*sigma_k(n), b(2n+1, k) = sigma_k(2n+1). b(n, k) is multiplicative with a(p^e) = 1 if p = 2, (p^(k*e+k)-1)/(p^k-1) if p > 2. (End)
G.f. for b(n, k): Sum_{m>0} m^k*x^m*(1-(2^k-1)*x^m)/(1-x^(2*m)). - Vladeta Jovovic, Oct 19 2002
Dirichlet g.f. (1-2^(2-s))*zeta(s)*zeta(s-2). - R. J. Mathar, Apr 06 2011
Dirichlet convolution of A001157 with [1,-4,0,0,0,0...]. Dirichlet convolution of [1,-3,1,-3,1,-3,..] with A000290. Dirichlet convolution of [1,0,9,0,25,0,49,0,81,...] with A000012 (or A057427). - R. J. Mathar, Jun 28 2011
a(n) = sum(A182469(n,k)^2: k=1..A001227(n)). [Reinhard Zumkeller, May 01 2012]
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 6. - Vaclav Kotesovec, Nov 09 2018
G.f.: Sum_{n >= 1} x^n*(1 + 6*x^(2*n) + x^(4*n))/(1 - x^(2*n))^3. - Peter Bala, Dec 19 2021
Sum_{k=1..n} (-1)^(k+1) * a(k) ~ zeta(3) * n^3 / 8. - Vaclav Kotesovec, Aug 07 2022
EXAMPLE
x + x^2 + 10*x^3 + x^4 + 26*x^5 + 10*x^6 + 50*x^7 + x^8 + 91*x^9 + 26*x^10 + ...
MATHEMATICA
a[n_] := 1/2*Sum[(1 - (-1)^d)*d^2, {d, Divisors[n]}]; Table[a[n], {n, 1, 59}] (* Jean-François Alcover, Oct 23 2012, from 2nd formula *)
a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d^2, {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
f[p_, e_] := If[p == 2, 1, (p^(2*e + 2) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 22 2020 *)
Table[Total[Select[Divisors[n], OddQ]^2], {n, 80}] (* Harvey P. Dale, Jul 19 2024 *)
PROG
(Haskell)
a050999 = sum . map (^ 2) . a182469_row
-- Reinhard Zumkeller, May 01 2012
(PARI) a(n)=sumdiv(n, d, if(d%2==1, d^2, 0 ) ); /* Joerg Arndt, Oct 07 2012 */
(Python)
from sympy import divisor_sigma
def A050999(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(), 2)) # Chai Wah Wu, Jul 16 2022
KEYWORD
nonn,mult
STATUS
approved