[go: up one dir, main page]

login
A182469
Triangle read by rows in which row n lists the odd divisors of n.
21
1, 1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 3, 5, 15, 1, 1, 17, 1, 3, 9, 1, 19, 1, 5, 1, 3, 7, 21, 1, 11, 1, 23, 1, 3, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 7, 1, 29, 1, 3, 5, 15, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 7, 35, 1
OFFSET
1,4
COMMENTS
Row lengths: A001227; row sums: A000593; row products: A136655;
n-th row = intersection of A005408 and of n-th row of A027750;
A000265(n) = T(n,A001227(n)).
LINKS
FORMULA
T(n,k) = A027750(A000265(n),k), 1 <= k <= A001227(n).
EXAMPLE
The triangle begins:
. 1 {1}
. 2 {1}
. 3 {1,3}
. 4 {1}
. 5 {1,5}
. 6 {1,3}
. 7 {1,7}
. 8 {1}
. 9 {1,3,9}
. 10 {1,5}
. 11 {1,11}
. 12 {1,3}
. 13 {1,13}
. 14 {1,7}
. 15 {1,3,5,15}
. 16 {1} .
MATHEMATICA
Flatten[Table[Select[Divisors[n], OddQ], {n, 40}]] (* Harvey P. Dale, Aug 13 2012 *)
PROG
(Haskell)
a182469 n k = a182469_tabf !! (n-1) !! (k-1)
a182469_row = a027750_row . a000265
a182469_tabf = map a182469_row [1..]
(PARI) tabf(nn) = {for (n=1, nn, fordiv(n, d, if (d%2, print1(d, ", "))); print(); ); } \\ Michel Marcus, Apr 22 2017
(Python)
from sympy import divisors
def row(n):
return [d for d in divisors(n) if d % 2]
for n in range(1, 21): print(row(n)) # Indranil Ghosh, Apr 22 2017
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Apr 30 2012
STATUS
approved