[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058615
McKay-Thompson series of class 30D for Monster.
2
1, 0, 3, 4, 5, 10, 15, 22, 29, 36, 53, 72, 99, 128, 160, 212, 272, 354, 448, 556, 703, 874, 1096, 1356, 1662, 2050, 2501, 3060, 3716, 4492, 5444, 6550, 7882, 9436, 11262, 13460, 16013, 19034, 22536, 26616, 31450, 37048, 43602, 51164, 59905
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of -2 + ((eta(q^2)*eta(q^3)*eta(q^10)*eta(q^15))/(eta(q)* eta(q^5)*eta(q^6)*eta(q^30)))^2 in powers of q. - G. C. Greubel, Jun 18 2018
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
EXAMPLE
T30D = 1/q + 3*q + 4*q^2 + 5*q^3 + 10*q^4 + 15*q^5 + 22*q^6 + 29*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; A:= ((eta[q^2]*eta[q^3]*eta[q^10]* eta[q^15])/(eta[q]*eta[q^5]*eta[q^6]*eta[q^30]))^2; a:= CoefficientList[Series[-2 + A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
PROG
(PARI) q='q+O('q^50); A = -2 + ((eta(q^2)*eta(q^3)*eta(q^10)*eta(q^15))/( eta(q)* eta(q^5)*eta(q^6)*eta(q^30)))^2/q; Vec(A) \\ G. C. Greubel, Jun 18 2018
CROSSREFS
Cf. A205962 (same sequence except for n=0).
Sequence in context: A079351 A183050 A176848 * A082612 A339569 A170926
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved