[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058613
McKay-Thompson series of class 30B for the Monster group with a(0) = 0.
1
1, 0, 4, 2, 6, 10, 15, 18, 37, 30, 57, 70, 105, 114, 178, 192, 285, 346, 465, 522, 751, 830, 1125, 1328, 1708, 1974, 2600, 2964, 3795, 4424, 5541, 6390, 8090, 9230, 11424, 13308, 16225, 18714, 22941, 26216, 31794, 36730, 44020, 50544, 60671, 69360, 82560, 94952
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
G.f. T30B = 3 + e30A + 1 / e30A = 1 + e30C + 4 / e30C = -2 + e30D + 1 / e30D = -1 + e30F + 1 / e30F where e30A is g.f. A205826, e30C is g.f. A132321, e30D is g.f. A205962, and e30F is g.f. A205977.
Convolution square of A058732. - Michael Somos, Feb 02 2012
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of A + 3 + 1/A, where A := (eta(q)*eta(q^6)*eta(q^10)*eta(q^15] )/( eta(q^2)*eta(q^3)*eta(q^5)*eta(q^30)))^3, in powers of q. - G. C. Greubel, Jun 22 2018
EXAMPLE
T30B = 1/q + 4*q + 2*q^2 + 6*q^3 + 10*q^4 + 15*q^5 + 18*q^6 + 37*q^7 + ...
MATHEMATICA
nmax = 50; QP = QPochhammer; A = x*O[x]^(nmax + 1); A = (QP[A + x^3]*QP[A + x^5]*QP[A + x^6]*QP[A + x^10])/(QP[A + x]*QP[A + x^2]*QP[A + x^15]*QP[A + x^30]); a[n_] := SeriesCoefficient[x^2/A + A - x, n + 1]; Table[a[n], {n, -1, nmax}] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
eta[q_]:= q^(1/24)*QPochhammer[q]; A := (eta[q]*eta[q^6]*eta[q^10]* eta[q^15]/(eta[q^2]*eta[q^3]*eta[q^5]*eta[q^30]))^3; a:=CoefficientList[ Series[q*(A + 3 + 1/A), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 22 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = eta(x^3 + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^15 + A) * eta(x^30 + A)); polcoeff( -x + A + x^2 / A, n))} /* Michael Somos, Feb 02 2012 */
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved