[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058614
McKay-Thompson series of class 30C for Monster.
3
1, 0, 0, -2, 2, -2, 3, -2, 5, -6, 5, -6, 9, -10, 10, -16, 17, -18, 25, -26, 31, -38, 37, -48, 60, -62, 68, -84, 95, -104, 125, -134, 154, -182, 192, -220, 257, -274, 309, -360, 394, -434, 492, -544, 607, -688, 740, -824, 944, -1018, 1123, -1266, 1377, -1524, 1697, -1850, 2041, -2264, 2461, -2708
OFFSET
-1,4
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
G.f.: u + v - 1 = u * v + 1 where u = Product_{k>0} (1 - x^k) * (1 - x^(15*k)) / ((1 - x^(6*k)) * (1 - x^(10*k))), v = 1/x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(5*k)) / ((1 - x^(2*k)) * (1 - x^(30*k))). - Seiichi Manyama, May 04 2017
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n/15)) / (2*15^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
Expansion of 1 + eta(q)*eta(q^3)*eta(q^5)*eta(q^15)/(eta(q^2)*eta(q^6)* eta(q^10)*eta(q^30)) in powers of q. - G. C. Greubel, Jun 14 2018
EXAMPLE
T30C = 1/q - 2*q^2 + 2*q^3 - 2*q^4 + 3*q^5 - 2*q^6 + 5*q^7 - 6*q^8 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(1 + eta[q]*eta[q^3]*eta[q^5]*eta[q^15]/(eta[q^2]*eta[q^6]* eta[q^10]* eta[q^30])), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)
QP=QPochhammer; a:= CoefficientList[Series[q + QP[q]*QP[q^3]*QP[q^5]* QP[q^15]/(QP[q^2]*QP[q^6]*QP[q^10]*QP[q^30]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)
PROG
(PARI) q='q+O('q^50); A = 1 + eta(q)*eta(q^3)*eta(q^5)*eta(q^15)/( eta(q^2)*eta(q^6)* eta(q^10)*eta(q^30))/q; Vec(A) \\ G. C. Greubel, Jun 14 2018
CROSSREFS
Cf. A132321 (same sequence except for n=0).
Cf. A131797 (u), A058618 (v).
Sequence in context: A283751 A132321 A058726 * A122765 A131053 A219281
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved