[go: up one dir, main page]

login
A055991
a(n) is its own 4th difference.
9
1, 5, 19, 69, 250, 907, 3292, 11949, 43371, 157422, 571388, 2073943, 7527704, 27322992, 99173120, 359964521, 1306548149, 4742323107, 17213011605, 62477347458, 226771411939, 823102698260, 2987581397893, 10843899100203
OFFSET
1,2
COMMENTS
a(n) is the number of distinct matrix products in (A+B+C+D+E)^n where A,B,C and D all commute with each other, but not with E. - Paul D. Hanna and Max Alekseyev, Feb 01 2006
Row sums of Riordan array (1,1/(1-x)^4). - Paul Barry, Feb 02 2006
Quadrisection of A003269: a(n)=A003269(4n-1). - Paul Barry, Feb 02 2006
From Gary W. Adamson, Apr 23 2009: (Start)
Equals the INVERT transform of the tetrahedral series.
a(4) = 69 = (1, 4, 10) dot (19, 5, 1) + 20; = (19 + 20 + 10) + 20. (End)
LINKS
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 16.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
FORMULA
a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055990(n) = A055988(n+1)-A055988(n) = A055989(n+1)-2*A055989(n)+A055989(n-1).
Letting a(0)=1, we have a(n)=sum(u=0, n-1, sum(v=0, u, sum(w=0, v, sum(x=0, w, a(x))))) for n>0. - Benoit Cloitre, Jan 26 2003
a(n) = sum_{k=1..n} binomial(n+3*k-1, n-k). - Vladeta Jovovic, Mar 23 2003
a(n) = sum{k=0..n, binomial(4n-3k-1,k)}. - Paul Barry, Feb 02 2006
G.f.: x/(1-5x+6x^2-4x^3+x^4). - Paul Barry, Feb 02 2006
MATHEMATICA
LinearRecurrence[{5, -6, 4, -1}, {1, 5, 19, 69}, 30] (* Harvey P. Dale, Feb 27 2013 *)
PROG
(Magma) I:=[1, 5, 19, 69]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
CROSSREFS
Cf. A055988, A055989, A055990 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.
Sequence in context: A047145 A240525 A264200 * A030662 A149758 A026590
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 02 2000
STATUS
approved