[go: up one dir, main page]

login
A055988
Sequence is its own 4th difference.
8
1, 2, 7, 26, 95, 345, 1252, 4544, 16493, 59864, 217286, 788674, 2862617, 10390321, 37713313, 136886433, 496850954, 1803399103, 6545722210, 23758733815, 86236081273, 313007493212, 1136110191472, 4123691589365, 14967590689568
OFFSET
1,2
COMMENTS
Row sums of Riordan array (1/(1-x), x/(1-x)^4), A109960. - Paul Barry, Jul 06 2005
FORMULA
a(n) = 5a(n-1) - 6a(n-2) + 4a(n-3) - a(n-4) = a(n-1) + A055991(n-1) = A055989(n) - A055989(n-1) = A055990(n) - 2*A055990(n-1) + A055990(n-2).
From Paul Barry, Jul 06 2005: (Start)
G.f.: (1-x)^3/(1 - 5x + 6x^2 - 4x^3 + x^4);
a(n) = Sum_{k=0..n} binomial(n+3k, 4k). (End)
MATHEMATICA
CoefficientList[Series[(1-x)^3/(1-5x+6x^2-4x^3+x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 05 2012 *)
LinearRecurrence[{5, -6, 4, -1}, {1, 2, 7, 26}, 30] (* Harvey P. Dale, Jan 15 2017 *)
PROG
(Magma) I:=[1, 2, 7, 26]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
CROSSREFS
Cf. A055989, A055990, A055991 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.
Sequence in context: A289449 A188860 A129273 * A371798 A275013 A278351
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 02 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved