[go: up one dir, main page]

login
A264200
Numerator of sum of numbers in set g(n) generated as in Comments
1
0, 1, 5, 19, 69, 235, 789, 2603, 8533, 27819, 90453, 293547, 951637, 3082923, 9983317, 32320171, 104617301, 338602667, 1095849301, 3546458795, 11477013845, 37141260971, 120193373525, 388957383339, 1258699445589, 4073250794155, 13181344109909, 42655780874923
OFFSET
0,3
COMMENTS
Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
(1) if x is in g(n-1), then x + 1 is in g(n); and
(2) if x is in g(n-1) and x < 2, then x/2 is in g(n).
The sum of numbers in g(n) is a(n)/2^(n-1).
FORMULA
Conjecture: a(n) = 3*a(n-1) + 4*a(n-2) - 8*a(n-3) - 8*a(n-4).
EXAMPLE
g(0) = {0}, sum = 0.
g(1) = {1}, sum = 1.
g(2) = {1/2,2/1}, sum = 5/4.
g(3) = {1/4,3/2,3/1}, sum = 19/8.
MATHEMATICA
z = 30; x = 1/2; g[0] = {0}; g[1] = {1};
g[n_] := g[n] = Union[1 + g[n - 1], (1/2) Select[g[n - 1], # < 2 &]]
Table[g[n], {n, 0, z}]; Table[Total[g[n]], {n, 0, z}]
Numerator[Table[Total[g[n]], {n, 0, z}] ]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 09 2015
STATUS
approved